Stream: Internet Research Task Force (IRTF)

RFC: 9497

Category: Informational

Published: December 2023

ISSN: 2070-1721

Authors: A. Davidson A.Faz-Hernandez N. Sullivan C. A. Wood
Brave Software Cloudflare, Inc. Cloudflare, Inc. Cloudflare, Inc.

RFC 9497
Oblivious Pseudorandom Functions (OPRFs) Using
Prime-Order Groups

Abstract

An Oblivious Pseudorandom Function (OPRF) is a two-party protocol between a client and a
server for computing the output of a Pseudorandom Function (PRF). The server provides the PRF
private key, and the client provides the PRF input. At the end of the protocol, the client learns the
PRF output without learning anything about the PRF private key, and the server learns neither
the PRF input nor output. An OPRF can also satisfy a notion of 'verifiability', called a VOPRE. A
VOPRF ensures clients can verify that the server used a specific private key during the execution
of the protocol. A VOPRF can also be partially oblivious, called a POPRF. A POPRF allows clients
and servers to provide public input to the PRF computation. This document specifies an OPREF,
VOPRE, and POPRF instantiated within standard prime-order groups, including elliptic curves.
This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the
results of Internet-related research and development activities. These results might not be
suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group
of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are
not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9497.

Davidson, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9497
https://www.rfc-editor.org/info/rfc9497

RFC 9497 OPRFs December 2023

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document.

Table of Contents

1. Introduction
1.1. Requirements Language

1.2. Notation and Terminology

2. Preliminaries
2.1. Prime-Order Group
2.2. Discrete Logarithm Equivalence Proofs
2.2.1. Proof Generation

2.2.2. Proof Verification

3. Protocol
3.1. Configuration
3.2. Key Generation and Context Setup

3.2.1. Deterministic Key Generation

3.3. Online Protocol
3.3.1. OPRF Protocol
3.3.2. VOPRF Protocol
3.3.3. POPRF Protocol

4. Ciphersuites
4.1. OPREF(ristretto255, SHA-512)
4.2. OPRF(decaf448, SHAKE-256)
4.3. OPRF(P-256, SHA-256)
4.4. OPRF(P-384, SHA-384)

Davidson, et al. Informational

o I o >

10

12
14
15
16

17
18
20
22

26
27
28
28
29

Page 2

https://trustee.ietf.org/license-info

RFC 9497 OPRFs

4.5. OPRF(P-521, SHA-512)

4.6. Future Ciphersuites

4.7. Random Scalar Generation
4.7.1. Rejection Sampling

4.7.2. Random Number Generation Using Extra Random Bits

5. Application Considerations
5.1. Input Limits
5.2. External Interface Recommendations
5.3. Error Considerations

5.4. POPRF Public Input

6. IANA Considerations
7. Security Considerations
7.1. Security Properties
7.2. Security Assumptions
7.2.1. OPRF and VOPRF Assumptions
7.2.2. POPRF Assumptions
7.2.3. Static Diffie-Hellman Attack and Security Limits

7.3. Domain Separation

7.4. Timing Leaks

8. References
8.1. Normative References

8.2. Informative References

Appendix A. Test Vectors
A.1. ristretto255-SHA512
A.1.1. OPRF Mode
A.1.2. VOPRF Mode
A.1.3. POPRF Mode

A.2. decaf448-SHAKE256
A.2.1. OPRF Mode
A.2.2. VOPRF Mode

Davidson, et al. Informational

December 2023

30
31
32
32
32

32
32
33
33
33

34
34
34
35
35
36
36

37
37

37
37
37

39
40
40
40
42

43
43
44

Page 3

RFC 9497 OPRFs December 2023

A.2.3. POPRF Mode

A.3. P256-SHA256
A.3.1. OPRF Mode
A.3.2. VOPRF Mode
A.3.3. POPRF Mode

A.4. P384-SHA384
A.4.1. OPRF Mode
A.4.2. VOPRF Mode
A.4.3. POPRF Mode

A.5. P521-SHA512
A.5.1. OPRF Mode
A.5.2. VOPRF Mode
A.5.3. POPRF Mode

Acknowledgements

Authors' Addresses

1. Introduction

46

48
48
49
50

52
52
53
54

56
56
57
39

61
61

A Pseudorandom Function (PRF) F(k, xX) is an efficiently computable function taking a private key

k and a value x as input. This function is pseudorandom if the keyed function K(_) = F(k,) is

indistinguishable from a randomly sampled function acting on the same domain and range as
K(). An Oblivious PRF (OPRF) is a two-party protocol between a server and a client, wherein the
server holds a PRF key k and the client holds some input x. The protocol allows both parties to
cooperate in computing F(k, x), such that the client learns F(k, x) without learning anything about
k and the server does not learn anything about x or F(k, X). A Verifiable OPRF (VOPRF) is an OPRE,
wherein the server also proves to the client that F(k, x) was produced by the key k corresponding
to the server's public key, which the client knows. A Partially Oblivious PRF (POPRF) is a variant

of a VOPRF, where the client and server interact in computing F(k, X, y), for some PRF F with

server-provided key k, client-provided input x, and public input y, and the client receives proof

that F(k, X, y) was computed using k corresponding to the public key that the client knows. A
POPRF with fixed input y is functionally equivalent to a VOPRF.

Davidson, et al. Informational

Page 4

RFC 9497 OPRFs December 2023

OPRFs have a variety of applications, including password-protected secret sharing schemes
[JKKX16], privacy-preserving password stores [SJKS17], and password-authenticated key
exchange (PAKE) [OPAQUE]. Verifiable OPRFs are necessary in some applications, such as Privacy
Pass [PRIVACY-PASS]. Verifiable OPRFs have also been used for password-protected secret
sharing schemes, such as that of [JKK14].

This document specifies OPRF, VOPRF, and POPRF protocols built upon prime-order groups. The
document describes each protocol variant, along with application considerations, and their
security properties.

This document represents the consensus of the Crypto Forum Research Group (CFRG). It is not an
IETF product and is not a standard.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

1.2. Notation and Terminology

The following functions and notation are used throughout the document.

* For any object x, we write len(x) to denote its length in bytes.
* For two-byte arrays x and y, write x || y to denote their concatenation.

* [20SP(x, xLen) converts a nonnegative integer x into a byte array of specified length xLen, as
described in [RFC8017]. Note that this function returns a byte array in big-endian byte order.
* The notation T U[N] refers to an array called U, containing N items of type T. The type

opague means one single byte of uninterpreted data. Items of the array are zero-indexed and
referred to as U[j], such that 0 <=j <N.

All algorithms and procedures described in this document are laid out in a Python-like
pseudocode. Each function takes a set of inputs and parameters and produces a set of output
values. Parameters become constant values once the protocol variant and the ciphersuite are
fixed.

The PrivateInput data type refers to inputs that are known only to the client in the protocol,
whereas the PublicInput data type refers to inputs that are known to both the client and server
in the protocol. Both PrivateInput and PublicInput are opaque byte strings of arbitrary length

no larger than 2161 bytes. This length restriction exists because PublicInput and
PrivateInput values are length-prefixed with two bytes before use throughout the protocol.

String values, such as "DeriveKeyPair", "Seed-", and "Finalize", are ASCII string literals.

The following terms are used throughout this document.

Davidson, et al. Informational Page 5

RFC 9497 OPRFs December 2023

PRF: Pseudorandom Function

OPRF: Oblivious Pseudorandom Function

VOPRF: Verifiable Oblivious Pseudorandom Function

POPRF: Partially Oblivious Pseudorandom Function

Client: Protocol initiator. Learns PRF evaluation as the output of the protocol.

Server: Computes the PRF using a private key. Learns nothing about the client's input or output.

2. Preliminaries

The protocols in this document have two primary dependencies:

Group: A prime-order group implementing the API described below in Section 2.1. See Section 4
for specific instances of groups.

Hash: A cryptographic hash function whose output length is Nh bytes.

Section 4 specifies ciphersuites as combinations of Group and Hash.

2.1. Prime-Order Group

In this document, we assume the construction of an additive, prime-order group, denoted Group,
for performing all mathematical operations. In prime-order groups, any element (other than the
identity) can generate the other elements of the group. Usually, one element is fixed and defined
as the group generator. Such groups are uniquely determined by the choice of the prime p that
defines the order of the group. (However, different representations of the group for a single p
may exist. Section 4 lists specific groups that indicate both the order and representation.)

The fundamental group operation is addition + with identity element I. For any elements A and B
of the group, A + B = B + Ais also a member of the group. Also, for any A in the group, there
exists an element -A, such that A + (-A) = (-A) + A = I.Scalar multiplication by r is
equivalent to the repeated application of the group operation on an element A with itself r - 1
times; thisis denotedasr * A = A + ... + A.ForanyelementA,p *# A = I.The case when
the scalar multiplication is performed on the group generator is denoted as ScalarMultGen(r).
Given two elements A and B, the discrete logarithm problem is to find an integer k, such that B =k
* A. Thus, k is the discrete logarithm of B with respect to the base A. The set of scalars
corresponds to GF(p), a prime field of order p, and is represented as the set of integers defined
by{e, 1, ..., p - 1}.This document uses types Element and Scalar to denote elements of
the group and its set of scalars, respectively.

We now detail a number of member functions that can be invoked on a prime-order group.

Order(): Outputs the order of the group (i.e., p).

Davidson, et al. Informational Page 6

RFC 9497 OPRFs December 2023

Identity(): Outputs the identity element of the group (i.e., I).
Generator(): Outputs the generator element of the group.

HashToGroup(x): Deterministically maps an array of bytes x to an element of Group. The map
must ensure that, for any adversary receiving R = HashToGroup(x), it is computationally
difficult to reverse the mapping. This function is optionally parameterized by a domain
separation tag (DST); see Section 4. Security properties of this function are described in
[RFC9380].

HashToScalar(x): Deterministically maps an array of bytes x to an element in GF(p). This
function is optionally parameterized by a DST; see Section 4. Security properties of this
function are described in [RFC9380], Section 10.5.

RandomScalar(): Chooses at random a nonzero element in GF(p).
ScalarInverse(s): Returns the inverse of input Scalar s on GF(p).
SerializeElement(A): Maps an Element A to a canonical byte array buf of fixed-length Ne.

DeserializeElement(buf): Attempts to map a byte array buf to an Element A and fails if the input
is not the valid canonical byte representation of an element of the group. This function can
raise a DeserializeError if deserialization fails or A is the identity element of the group; see
Section 4 for group-specific input validation steps.

SerializeScalar(s): Maps Scalar s to a canonical byte array buf of fixed-length Ns.

DeserializeScalar(buf): Attempts to map a byte array buf to Scalar s. This function can raise a
DeserializeError if deserialization fails; see Section 4 for group-specific input validation steps.

Section 4 contains details for the implementation of this interface for different prime-order
groups instantiated over elliptic curves. In particular, for some choices of elliptic curves, e.g.,
those detailed in [RFC7748], which require accounting for cofactors, Section 4 describes required
steps necessary to ensure the resulting group is of prime order.

2.2. Discrete Logarithm Equivalence Proofs

A proof of knowledge allows a prover to convince a verifier that some statement is true. If the
prover can generate a proof without interaction with the verifier, the proof is noninteractive. If
the verifier learns nothing other than whether the statement claimed by the prover is true or
false, the proof is zero-knowledge.

This section describes a noninteractive, zero-knowledge proof for discrete logarithm equivalence
(DLEQ), which is used in the construction of VOPRF and POPRF. A DLEQ proof demonstrates that
two pairs of group elements have the same discrete logarithm without revealing the discrete
logarithm.

The DLEQ proof resembles the Chaum-Pedersen [ChaumPedersen] proof, which is shown to be
zero-knowledge by Jarecki, et al. [[KK14] and is noninteractive after applying the Fiat-Shamir
transform [FS00]. Furthermore, Davidson, et al. [DGSTV18] showed a proof system for batching

Davidson, et al. Informational Page 7

https://rfc-editor.org/rfc/rfc9380#section-10.5

RFC 9497 OPRFs December 2023

DLEQ proofs that has constant-size proofs with respect to the number of inputs. The specific
DLEQ proof system presented below follows this latter construction with two modifications: (1)
the transcript used to generate the seed includes more context information and (2) the individual
challenges for each element in the proof is derived from a seed-prefixed hash-to-scalar
invocation, rather than being sampled from a seeded Pseudorandom Number Generator (PRNG).
The description is split into two subsections: one for generating the proof, which is done by
servers in the verifiable protocols, and another for verifying the proof, which is done by clients
in the protocol.

2.2.1. Proof Generation

Generating a proof is done with the GenerateProof function, as defined below. Given Element
values A and B, two non-empty lists of Element values C and D of length m, and Scalar k, this
function produces a proof thatk * A == Bandk * C[i] == D[i] foreachiin [0, ..., m -
1]. The output is a value of type Proof, which is a tuple of two Scalar values. We use the notation
proof[@] and proof[1] to denote the first and second elements in this tuple, respectively.

GenerateProof accepts lists of inputs to amortize the cost of proof generation. Applications can
take advantage of this functionality to produce a single, constant-sized proof for m DLEQ inputs,
rather than m proofs for m DLEQ inputs.

Davidson, et al. Informational Page 8

RFC 9497

Input:

Scalar k
Element A
Element B
Element C[m]
Element D[m]

Output:

Proof proof

Parameters:

Group G

def GenerateProof(k, A, B, C, D):

OPRFs

(M, Z) = ComputeCompositesFast(k, B, C, D)

r

t2 = r *

t3=r *M

Bm = G.SerializeElement(B)

a0 = G.SerializeElement(M)

al = G.SerializeElement(Z)

a2 = G.SerializeElement(t2)

a3 = G.SerializeElement(t3)

challengeTranscript
I20SP(len(Bm), 2) Bm |
I20SP(1len(a@), 2) a0 |
I20SP(len(al), 2) al |
I20SP(len(a2), 2) a2 |
I20SP(1len(a3), 2) a3 |
"Challenge"

c

S

= G.RandomScalar()
A

G.HashToScalar(challengeTranscript)

r-c*k

return [c, s]

December 2023

The helper function ComputeCompositesFast is as defined below and is an optimization of the
ComputeComposites function for servers since they have knowledge of the private key.

Davidson, et al.

Informational

Page 9

RFC 9497 OPRFs December 2023

Input:

Scalar k
Element B
Element C[m]
Element D[m]

Output:

Element M
Element Z

Parameters:

Group G
PublicInput contextString

def ComputeCompositesFast(k, B, C, D):
Bm = G.SerializeElement(B)
seedDST = "Seed-" || contextString
seedTranscript =
I20SP(len(Bm), 2) || Bm ||
I20SP(len(seedDST), 2) || seedDST
seed = Hash(seedTranscript)

M = G.Identity()
for i in range(m):
Ci = G.SerializeElement(C[i])
Di = G.SerializeElement(D[1])
compositeTranscript =
I20SP(len(seed), 2) |
I20SP(len(Ci), 2) ||
I20SP(len(Di), 2) ||
"Composite"

| seed || I20SP(i, 2) ||
Ci |
Di |

|

|
di = G.HashToScalar(compositeTranscript)
M=di * C[i] + M

Z =k *M

return (M, Z)

When used in the protocol described in Section 3, the parameter contextString is as defined in
Section 3.2.

2.2.2. Proof Verification

Verifying a proof is done with the VerifyProof function, as defined below. This function takes
Element values A and B, two non-empty lists of Element values C and D of length m, and a Proof
value output from GenerateProof. It outputs a single boolean value indicating whether or not
the proof is valid for the given DLEQ inputs. Note this function can verify proofs on lists of inputs
whenever the proof was generated as a batched DLEQ proof with the same inputs.

Davidson, et al. Informational Page 10

RFC 9497 OPRFs December 2023

Input:
Element A
Element B
Element C[m]
Element D[m]
Proof proof
Output:
boolean verified
Parameters:

Group G

def VerifyProof(A, B, C, D, proof):
(M, 2) = ComputeComp051tes(B C, D)

c = proof[@]

s = proof[1]

t2 = ((s * A) + (c * B))

t3 = ((s * M) + (c * 7))

Bm = G.SerializeElement(B)

a@ = G.SerializeElement(M)

al = G.SerializeElement(Z)

a2 = G.SerializeElement(t2)

a3 = G.SerializeElement(t3)

challengeTranscript =
I20SP(len(Bm), 2) || Bm ||
I20SP(len(a@), 2) || a0 ||
I20SP(len(atl), 2) || a1 ||
I20SP(len(a2), 2) || a2 ||
I20SP(len(a3), 2) || a3 ||
"Challenge"

expectedC = G.HashToScalar(challengeTranscript)
verified = (expectedC == c)

return verified

The definition of ComputeComposites is given below.

Davidson, et al. Informational Page 11

RFC 9497 OPRFs December 2023

Input:

Element B
Element C[m]
Element D[m]

Output:

Element M
Element Z

Parameters:

Group G
PublicInput contextString

def ComputeComposites(B, C, D):
Bm = G.SerializeElement(B)
seedDST = "Seed-" || contextString
seedTranscript =
I20SP(len(Bm), 2) || Bm ||
I20SP(len(seedDST), 2) || seedDST
seed = Hash(seedTranscript)

M = G.Identity()
Z = G.Identity()
for i in range(m):
Ci = G.SerializeElement(C[i])
Di = G.SerializeElement(D[1])
compositeTranscript =
I20SP(len(seed), 2) |
I20SP(len(Ci), 2) ||
I20SP(len(Di), 2) ||
"Composite"

seed || I20SP(i, 2) ||
I
i

I
Ci ||
Di ||

di = G.HashToScalar(compositeTranscript)
M di * C[i] + M
YA di * D[i] + Z

return (M, Z)

When used in the protocol described in Section 3, the parameter contextString is as defined in
Section 3.2.

3. Protocol

In this section, we define and describe three protocol variants referred to as the OPRF, VOPRE,
and POPRF modes. Each of these variants involves two messages between the client and server,
but they differ slightly in terms of the security properties; see Section 7.1 for more information. A
high-level description of the functionality of each mode follows.

Davidson, et al. Informational Page 12

RFC 9497 OPRFs December 2023

In the OPRF mode, a client and server interact to compute output = F(skS, input), where
input is the client's private input, skS is the server's private key, and output is the OPRF output.
After the execution of the protocol, the client learns the output and the server learns nothing.
This interaction is shown below.

Client(input) Server (skS)

blind, blindedElement = Blind(input)

blindedElement

evaluatedElement = BlindEvaluate(skS, blindedElement)

evaluatedElement
output = Finalize(input, blind, evaluatedElement)

Figure 1: OPRF Protocol Overview

In the VOPRF mode, the client additionally receives proof that the server used skS in computing
the function. To achieve verifiability, as in [JKK14], the server provides a zero-knowledge proof
that the key provided as input by the server in the BlindEvaluate function is the same key as is
used to produce the server's public key, pkS, which the client receives as input to the protocol.
This proof does not reveal the server's private key to the client. This interaction is shown below.

blind, blindedElement = Blind(input)

blindedElement

evaluatedElement, proof = BlindEvaluate(skS, pkS,
blindedElement)

evaluatedElement, proof

output = Finalize(input, blind, evaluatedElement,
blindedElement, pkS, proof)

Figure 2: VOPRF Protocol Overview with Additional Proof

The POPRF mode extends the VOPRF mode such that the client and server can additionally
provide the public input info, which is used in computing the PRF. That is, the client and server
interact to compute output = F(skS, input, info), asis shown below.

Davidson, et al. Informational Page 13

RFC 9497 OPRFs December 2023

blind, blindedElement, tweakedKey = Blind(input, info, pkS)

blindedElement

evaluatedElement, proof = BlindEvaluate(skS, blindedElement,
info)

evaluatedElement, proof

output = Finalize(input, blind, evaluatedElement,
blindedElement, proof, info, tweakedKey)

Figure 3: POPRF Protocol Overview with Additional Public Input

Each protocol consists of an offline setup phase and an online phase, as described in Sections 3.2
and 3.3, respectively. Configuration details for the offline phase are described in Section 3.1.

3.1. Configuration

Each of the three protocol variants are identified with a one-byte value (in hexadecimal):

Mode Value
modeOPRF 0x00
modeVOPRF 0x01
modePOPRF 0x02

Table 1: Identifiers for Protocol Variants

Additionally, each protocol variant is instantiated with a ciphersuite or suite. Each ciphersuite is
identified with an ASCII string identifier, referred to as identifier; see Section 4 for the set of
initial ciphersuite values.

The mode and ciphersuite identifier values are combined to create a "context string" used
throughout the protocol with the following function:

def CreateContextString(mode, identifier):
return "OPRFV1-" || I20SP(mode, 1) || "-" || identifier

Davidson, et al. Informational Page 14

RFC 9497 OPRFs December 2023

3.2. Key Generation and Context Setup

In the offline setup phase, the server generates a fresh, random key pair (skS, pkS). There are two
ways to generate this key pair. The first of which is using the GenerateKeyPair function
described below.

Input: None
Output:

Scalar skS
Element pkS

Parameters:
Group G

def GenerateKeyPair():
skS = G.RandomScalar()
pkS = G.ScalarMultGen(skS)
return skS, pkS

The second way to generate the key pair is via the deterministic key generation function
DeriveKeyPair, as described in Section 3.2.1. Applications and implementations can use either
method in practice.

Also during the offline setup phase, both the client and server create a context used for executing
the online phase of the protocol after agreeing on a mode and ciphersuite identifier. The context,
such as OPRFServerContext, is an implementation-specific data structure that stores a context
string and the relevant key material for each party.

The OPRF variant server and client contexts are created as follows:

def SetupOPRFServer(identifier, skS):
contextString = CreateContextString(modeOPRF, identifier)
return OPRFServerContext(contextString, skS)

def SetupOPRFClient(identifier):
contextString = CreateContextString(modeOPRF, identifier)
return OPRFClientContext(contextString)

The VOPRF variant server and client contexts are created as follows:

Davidson, et al. Informational Page 15

RFC 9497 OPRFs December 2023

def SetupVOPRFServer(identifier, skS):
contextString = CreateContextString(modeVOPRF, identifier)
return VOPRFServerContext(contextString, skS)

def SetupVOPRFClient(identifier, pkS):
contextString = CreateContextString(modeVOPRF, identifier)
return VOPRFClientContext(contextString, pkS)

The POPRF variant server and client contexts are created as follows:

def SetupPOPRFServer(identifier, skS):
contextString = CreateContextString(modePOPRF, identifier)
return POPRFServerContext(contextString, skS)

def SetupPOPRFClient(identifier, pkS):
contextString = CreateContextString(modePOPRF, identifier)
return POPRFClientContext(contextString, pkS)

3.2.1. Deterministic Key Generation

This section describes a deterministic key generation function, DeriveKeyPair. It accepts a seed
of 32 bytes generated from a cryptographically secure random number generator and an
optional (possibly empty) info string. Note that, by design, knowledge of seed and info is
necessary to compute this function, which means that the secrecy of the output private key (skS)
depends on the secrecy of seed (since the info string is public).

Davidson, et al. Informational Page 16

RFC 9497 OPRFs December 2023

Input:

opaque seed[32]
PublicInput info

Output:

Scalar skS
Element pkS

Parameters:

Group G
PublicInput contextString

Errors: DeriveKeyPairError

def DeriveKeyPair(seed, info):
deriveInput = seed || I20SP(len(info), 2) || info
counter = 0
skS = @
while skS == 0:
if counter > 255:
raise DeriveKeyPairError
skS = G.HashToScalar(deriveInput || I20SP(counter, 1),
DST = "DeriveKeyPair" || contextString)
counter = counter + 1
pkS = G.ScalarMultGen(skS)
return skS, pkS

3.3. Online Protocol

In the online phase, the client and server engage in a two-message protocol to compute the
protocol output. This section describes the protocol details for each protocol variant. Throughout
each description, the following parameters are assumed to exist:

G: aprime-order group implementing the API described in Section 2.1

contextString: a PublicInput domain separation tag constructed during context setup, as
created in Section 3.1

skS and pkS: a Scalar and Element representing the private and public keys configured for the
client and server in Section 3.2

Applications serialize protocol messages between the client and server for transmission. Element
values and Scalar values are serialized to byte arrays, and values of type Proof are serialized as
the concatenation of two serialized Scalar values. Deserializing these values can fail; in which
case, the application MUST abort the protocol, raising a DeserializeError failure.

Davidson, et al. Informational Page 17

RFC 9497 OPRFs December 2023

Applications MUST check that input Element values received over the wire are not the group
identity element. This check is handled after deserializing Element values; see Section 4 for more
information and requirements on input validation for each ciphersuite.

3.3.1. OPRF Protocol

The OPRF protocol begins with the client blinding its input, as described by the B1ind function

below. Note that this function can fail with an InvalidInputError error for certain inputs that
map to the group identity element. Dealing with this failure is an application-specific decision;

see Section 5.3.

Input:
PrivateInput input
Output:

Scalar blind
Element blindedElement

Parameters:
Group G

Errors: InvalidInputError

def Blind(input):
blind = G.RandomScalar()
inputElement = G.HashToGroup(input)
if inputElement == G.Identity():

raise InvalidInputError

blindedElement = blind * inputElement

return blind, blindedElement

Clients store blind locally and send blindedElement to the server for evaluation. Upon receipt,
servers process blindedElement using the BlindEvaluate function described below.

Input:

Scalar skS
Element blindedElement

Output:
Element evaluatedElement
def BlindEvaluate(skS, blindedElement):

evaluatedElement = skS * blindedElement
return evaluatedElement

Davidson, et al. Informational Page 18

RFC 9497 OPRFs December 2023

Servers send the output evaluatedElement to clients for processing. Recall that servers may
process multiple client inputs by applying the BlindEvaluate function to each blindedElement
received and returning an array with the corresponding evaluatedElement values.

Upon receipt of evaluatedElement, clients process it to complete the OPRF evaluation with the
Finalize function described below.

Input:
PrivateInput input
Scalar blind
Element evaluatedElement
Output:
opaque output[Nh]
Parameters:
Group G
def Finalize(input, blind, evaluatedElement):
N = G.ScalarInverse(blind) * evaluatedElement
unblindedElement = G.SerializeElement(N)
hashInput = I20SP(len(input), 2) || input ||
I20SP(len(unblindedElement), 2) || unblindedElement ||

"Finalize"
return Hash(hashInput)

An entity that knows both the private key and the input can compute the PRF result using the
following Evaluate function.

Davidson, et al. Informational Page 19

RFC 9497 OPRFs December 2023

Input:

Scalar skS
PrivateInput input

Output:

opaque output[Nh]
Parameters:

Group G
Errors: InvalidInputError

def Evaluate(skS, input):
inputElement = G.HashToGroup(input)
if inputElement == G.Identity():
raise InvalidInputError
evaluatedElement = skS * inputElement
issuedElement = G.SerializeElement(evaluatedElement)

hashInput = I20SP(len(input), 2) || input ||
I20SP(len(issuedElement), 2) || issuedElement ||
"Finalize"

return Hash(hashInput)

3.3.2. VOPRF Protocol

The VOPRF protocol begins with the client blinding its input, using the same B1lind function as in
Section 3.3.1. Clients store the output blind locally and send blindedElement to the server for
evaluation. Upon receipt, servers process blindedElement to compute an evaluated element and
a DLEQ proof using the following BlindEvaluate function.

Davidson, et al. Informational Page 20

RFC 9497 OPRFs

Input:

Scalar skS
Element pkS
Element blindedElement

Output:

Element evaluatedElement
Proof proof

Parameters:
Group G

def BlindEvaluate(skS, pkS, blindedElement):
evaluatedElement = skS * blindedElement
blindedElements = [blindedElement] // list of length 1
evaluatedElements = [evaluatedElement] // list of length 1
proof = GenerateProof(skS, G.Generator(), pkS,
blindedElements, evaluatedElements)
return evaluatedElement, proof

December 2023

In the description above, inputs to GenerateProof are one-item lists. Using larger lists allows
servers to batch the evaluation of multiple elements while producing a single batched DLEQ

proof for them.

The server sends both evaluatedElement and proof back to the client. Upon receipt, the client
processes both values to complete the VOPRF computation using the Finalize function below.

Davidson, et al. Informational

Page 21

RFC 9497 OPRFs December 2023

Input:

PrivateInput input
Scalar blind

Element evaluatedElement
Element blindedElement
Element pkS

Proof proof

Output:

opaque output[Nh]
Parameters:

Group G
Errors: VerifyError

def Finalize(input, blind, evaluatedElement,
blindedElement, pkS, proof):
blindedElements = [blindedElement] // list of length 1
evaluatedElements = [evaluatedElement] // list of length 1
if VerifyProof(G.Generator(), pkS, blindedElements,
evaluatedElements, proof) == false:
raise VerifyError

N = G.ScalarInverse(blind) * evaluatedElement
unblindedElement = G.SerializeElement(N)

hashInput = I20SP(len(input), 2) || input ||
I20SP(len(unblindedElement), 2) || unblindedElement ||
"Finalize"

return Hash(hashInput)

As in BlindEvaluate, inputs to VerifyProof are one-item lists. Clients can verify multiple inputs
at once whenever the server produced a batched DLEQ proof for them.

Finally, an entity that knows both the private key and the input can compute the PRF result using
the Evaluate function described in Section 3.3.1.

3.3.3. POPRF Protocol

The POPRF protocol begins with the client blinding its input, using the following modified B1ind
function. In this step, the client also binds a public info value, which produces an additional
tweakedKey to be used later in the protocol. Note that this function can fail with an
InvalidInputError error for certain private inputs that map to the group identity element, as
well as certain public inputs that, if not detected at this point, will cause server evaluation to fail.
Dealing with either failure is an application-specific decision; see Section 5.3.

Davidson, et al. Informational Page 22

RFC 9497 OPRFs December 2023

Input:

PrivateInput input
PublicInput info
Element pkS

Output:

Scalar blind
Element blindedElement
Element tweakedKey

Parameters:
Group G
Errors: InvalidInputError

def Blind(input, info, pkS):
framedInfo = "Info" || I20SP(len(info), 2) || info
m = G.HashToScalar(framedInfo)
T = G.ScalarMultGen(m)
tweakedKey = T + pkS
if tweakedKey == G.Identity():
raise InvalidInputError

blind = G.RandomScalar()

inputElement = G.HashToGroup(input)

if inputElement == G.Identity():
raise InvalidInputError

blindedElement = blind * inputElement

return blind, blindedElement, tweakedKey

Clients store the outputs blind and tweakedKey locally and send blindedElement to the server
for evaluation. Upon receipt, servers process blindedElement to compute an evaluated element
and a DLEQ proof using the following BlindEvaluate function.

Davidson, et al. Informational Page 23

RFC 9497 OPRFs December 2023

Input:
Scalar skS
Element blindedElement
PublicInput info
Output:

Element evaluatedElement
Proof proof

Parameters:
Group G
Errors: InverseError

def BlindEvaluate(skS, blindedElement, info):

framedInfo = "Info" || I20SP(len(info), 2) || info
m = G.HashToScalar(framedInfo)

t =skS +m

if t == 0:

raise InverseError
evaluatedElement = G.ScalarInverse(t) * blindedElement

tweakedKey = G.ScalarMultGen(t)

evaluatedElements = [evaluatedElement] // list of length 1

blindedElements = [blindedElement] // list of length 1

proof = GenerateProof(t, G.Generator(), tweakedKey,
evaluatedElements, blindedElements)

return evaluatedElement, proof

In the description above, inputs to GenerateProof are one-item lists. Using larger lists allows
servers to batch the evaluation of multiple elements while producing a single batched DLEQ
proof for them.

BlindEvaluate triggers InverseError when the function is about to calculate the inverse of a
zero scalar, which does not exist and therefore yields a failure in the protocol. This only occurs
for info values that map to the private key of the server. Thus, clients that cause this error
should be assumed to know the server private key. Hence, this error can be a signal for the
server to replace its private key.

The server sends both evaluatedElement and proof back to the client. Upon receipt, the client
processes both values to complete the POPRF computation using the Finalize function below.

Davidson, et al. Informational Page 24

RFC 9497 OPRFs December 2023

Input:

PrivateInput input
Scalar blind

Element evaluatedElement
Element blindedElement
Proof proof

PublicInput info

Element tweakedKey

Output:

opaque output[Nh]
Parameters:

Group G
Errors: VerifyError

def Finalize(input, blind, evaluatedElement, blindedElement,
proof, info, tweakedKey):
evaluatedElements = [evaluatedElement] // list of length 1
blindedElements = [blindedElement] // list of length 1
if VerifyProof(G.Generator(), tweakedKey, evaluatedElements,
blindedElements, proof) == false:
raise VerifyError

N = G.ScalarInverse(blind) * evaluatedElement
unblindedElement = G.SerializeElement(N)

hashInput = I20SP(len(input), 2) || input ||
I20SP(len(info), 2) || info ||
I20SP(len(unblindedElement), 2) || unblindedElement ||
"Finalize"

return Hash(hashInput)

As in BlindEvaluate, inputs to VerifyProof are one-item lists. Clients can verify multiple inputs
at once whenever the server produced a batched DLEQ proof for them.

Finally, an entity that knows both the private key and the input can compute the PRF result using
the Evaluate function described below.

Davidson, et al. Informational Page 25

RFC 9497 OPRFs December 2023

Input:

Scalar skS
PrivateInput input
PublicInput info

Output:
opaque output[Nh]
Parameters:
Group G
Errors: InvalidInputError, InverseError

def Evaluate(skS, input, info):
inputElement = G.HashToGroup(input)
if inputElement == G.Identity():
raise InvalidInputError

framedInfo = "Info" || I20SP(len(info), 2) || info
m = G.HashToScalar(framedInfo)
t =skS +m
if t ==
raise InverseError
evaluatedElement = G.ScalarInverse(t) * inputElement
issuedElement = G.SerializeElement(evaluatedElement)

hashInput = I20SP(len(input), 2) || input ||
I20SP(len(info), 2) || info ||
I20SP(len(issuedElement), 2) || issuedElement ||
"Finalize"

return Hash(hashInput)

4. Ciphersuites

A ciphersuite (also referred to as 'suite’ in this document) for the protocol wraps the functionality
required for the protocol to take place. The ciphersuite should be available to both the client and
server, and agreement on the specific instantiation is assumed throughout.

A ciphersuite contains instantiations of the following functionalities:

Group: A prime-order group exposing the API detailed in Section 2.1, with the generator
element defined in the corresponding reference for each group. Each group also specifies
HashToGroup, HashToScalar, and serialization functionalities. For HashToGroup, the domain
separation tag (DST) is constructed in accordance with the recommendations in [RFC9380],
Section 3.1. For HashToScalar, each group specifies an integer order that is used in reducing
integer values to a member of the corresponding scalar field.

Hash: A cryptographic hash function whose output length is Nh bytes long.

Davidson, et al. Informational Page 26

https://rfc-editor.org/rfc/rfc9380#section-3.1

RFC 9497 OPRFs December 2023

This section includes an initial set of ciphersuites with supported groups and hash functions. It

also includes implementation details for each ciphersuite, focusing on input validation. Future

documents can specify additional ciphersuites as needed, provided they meet the requirements
in Section 4.6.

For each ciphersuite, contextString is that which is computed in the Setup functions.
Applications should take caution in using ciphersuites targeting P-256 and ristretto255. See
Section 7.2 for related discussion.

4.1. OPRF(ristretto255, SHA-512)

This ciphersuite uses ristretto255 [RFC9496] for the Group and SHA-512 for the hash function.
The value of the ciphersuite identifier is "ristretto255-SHA512".

Group: ristretto255 [RFC9496]

Order(Q: Return 2252 + 27742317777372353535851937790883648493 (see [REC9496]).
Identity(): As defined in [RFC9496].
Generator(): As defined in [RFC9496].

HashToGroup(): Use hash_to_ristretto255 [RFC9380] with DST = "HashToGroup-" | |
contextString and expand_message = expand_message_xmd using SHA-512.

HashToScalar(): Compute uniform_bytes using expand_message = expand_message_xmd,
DST ="HashToScalar-" | | contextString, and an output length of 64 bytes, interpret
uniform_bytes as a 512-bit integer in little-endian order, and reduce the integer modulo
Group.Order().

ScalarInverse(s): Returns the multiplicative inverse of input Scalar s mod Group.Order ().

RandomScalar(): Implemented by returning a uniformly random Scalar in the range [0,
G.Order () - 1]. Refer to Section 4.7 for implementation guidance.

SerializeElement(A): Implemented using the Encode function from Section 4.3.2 of
[RFC9496]; Ne = 32.

DeserializeElement(buf): Implemented using the Decode function from Section 4.3.1 of
[RFC9496]. Additionally, this function validates that the resulting element is not the group
identity element. If these checks fail, deserialization returns an InputValidationError
error.

SerializeScalar(s): Implemented by outputting the little-endian, 32-byte encoding of the
Scalar value with the top three bits set to zero; Ns = 32.

DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar from a little-
endian, 32-byte string. This function can fail if the input does not represent a Scalar in the
range [0, G.Order () - 1]. Note that this means the top three bits of the input MUST be zero.

Davidson, et al. Informational Page 27

https://rfc-editor.org/rfc/rfc9496#section-4.3.2
https://rfc-editor.org/rfc/rfc9496#section-4.3.1

RFC 9497 OPRFs December 2023

Hash: SHA-512; Nh = 64.

4.2. OPRF(decaf448, SHAKE-256)

This ciphersuite uses decaf448 [RFC9496] for the Group and SHAKE-256 for the hash function.
The value of the ciphersuite identifier is "decaf448-SHAKE256".

Group: decaf448 [RFC9496]

Order(): Return 2446 -
13818066809895115352007386748515426880336692474882178609894547503885.

Identity(): As defined in [RFC9496].

Generator(): As defined in [RFC9496].

RandomScalar(): Implemented by returning a uniformly random Scalar in the range [0,
G.Order () - 1]. Refer to Section 4.7 for implementation guidance.

HashToGroup(): Use hash_to_decaf448 [RFC9380] with DST = "HashToGroup-" | |
contextString and expand_message = expand_message_xof using SHAKE-256.

HashToScalar(): Compute uniform_bytes using expand_message = expand_message_xof,
DST = "HashToScalar-" | | contextString, and output length 64, interpret uniform_bytes as
a 512-bit integer in little-endian order, and reduce the integer modulo Group.Order ().

ScalarInverse(s): Returns the multiplicative inverse of input Scalar s mod Group.Order ().

SerializeElement(A): Implemented using the Encode function from Section 5.3.2 of
[RFC9496]; Ne = 56.

DeserializeElement(buf): Implemented using the Decode function from Section 5.3.1 of
[RFC9496]. Additionally, this function validates that the resulting element is not the group
identity element. If these checks fail, deserialization returns an InputValidationError
error.

SerializeScalar(s): Implemented by outputting the little-endian, 56-byte encoding of the
Scalar value; Ns = 56.

DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar from a little-
endian, 56-byte string. This function can fail if the input does not represent a Scalar in the
range [0, G.Order () - 1].

Hash: SHAKE-256; Nh = 64.

4.3. OPRF(P-256, SHA-256)

This ciphersuite uses P-256 [NISTCurves] for the Group and SHA-256 for the hash function. The
value of the ciphersuite identifier is "P256-SHA256".

Davidson, et al. Informational Page 28

https://rfc-editor.org/rfc/rfc9496#section-5.3.2
https://rfc-editor.org/rfc/rfc9496#section-5.3.1

RFC 9497 OPRFs December 2023

Group: P-256 (secp256r1) [NISTCurves]

Order(): Return OXffffffff00000000fffftffffftffffbce6faada7179e84f3b9cac2fc632551.
Identity(): As defined in [NISTCurves].
Generator(): As defined in [NISTCurves].

RandomScalar(): Implemented by returning a uniformly random Scalar in the range [0,
G.0Order () - 1]. Refer to Section 4.7 for implementation guidance.

HashToGroup(): Use hash_to_curve with suite P256_XMD:SHA-256_SSWU_RO_ [RFC9380] and
DST = "HashToGroup-" | | contextString.

HashToScalar(): Use hash_to_field from [RFC9380] using L = 48, expand_message_xmd with
SHA-256, DST = "HashToScalar-" | | contextString, and a prime modulus equal to
Group.Order().

ScalarInverse(s): Returns the multiplicative inverse of input Scalar s mod Group.Order ().

SerializeElement(A): Implemented using the compressed Elliptic-Curve-Point-to-Octet-String
method according to [SEC1]; Ne = 33.

DeserializeElement(buf): Implemented by attempting to deserialize a 33-byte input string to
a public key using the compressed Octet-String-to-Elliptic-Curve-Point method according to
[SEC1] and then performing partial public-key validation, as defined in Section 5.6.2.3.4 of
[KEYAGREEMENT]. This includes checking that the coordinates of the resulting point are in
the correct range, that the point is on the curve, and that the point is not the group identity
element. If these checks fail, deserialization returns an InputValidationError error.

SerializeScalar(s): Implemented using the Field-Element-to-Octet-String conversion
according to [SEC1]; Ns = 32.

DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar from a 32-byte
string using Octet-String-to-Field-Element from [SEC1]. This function can fail if the input
does not represent a Scalar in the range [0, G.Order () - 1].

Hash: SHA-256; Nh = 32.

4.4. OPRF(P-384, SHA-384)
This ciphersuite uses P-384 [NISTCurves] for the Group and SHA-384 for the hash function. The

value of the ciphersuite identifier is "P384-SHA384".
Group: P-384 (secp384r1) [NISTCurves]

Order(): Return

Ox T e T e A T c7634d81f4372ddf581a0db248b0a77aecec196accc52
973.

Identity(): As defined in [NISTCurves].

Davidson, et al. Informational Page 29

RFC 9497 OPRFs December 2023

Generator(): As defined in [NISTCurves].

RandomScalar(): Implemented by returning a uniformly random Scalar in the range [0,
G.Order () - 1]. Refer to Section 4.7 for implementation guidance.

HashToGroup(): Use hash_to_curve with suite P384_XMD:SHA-384_SSWU_RO_ [RFC9380] and
DST = "HashToGroup-" | | contextString.

HashToScalar(): Use hash_to_field from [RFC9380] using L = 72, expand_message_xmd with
SHA-384, DST = "HashToScalar-" | | contextString, and a prime modulus equal to
Group.Order().

ScalarInverse(s): Returns the multiplicative inverse of input Scalar s mod Group.Order ().

SerializeElement(A): Implemented using the compressed Elliptic-Curve-Point-to-Octet-String
method according to [SEC1]; Ne = 49.

DeserializeElement(buf): Implemented by attempting to deserialize a 49-byte array to a
public key using the compressed Octet-String-to-Elliptic-Curve-Point method according to
[SEC1] and then performing partial public-key validation, as defined in Section 5.6.2.3.4 of
[KEYAGREEMENT]. This includes checking that the coordinates of the resulting point are in
the correct range, that the point is on the curve, and that the point is not the point at
infinity. Additionally, this function validates that the resulting element is not the group
identity element. If these checks fail, deserialization returns an InputValidationError
error.

SerializeScalar(s): Implemented using the Field-Element-to-Octet-String conversion
according to [SEC1]; Ns = 48.

DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar from a 48-byte
string using Octet-String-to-Field-Element from [SEC1]. This function can fail if the input
does not represent a Scalar in the range [0, G.Order () - 1].

Hash: SHA-384; Nh =48.

4.5. OPRF(P-521, SHA-512)

This ciphersuite uses P-521 [NISTCurves] for the Group and SHA-512 for the hash function. The
value of the ciphersuite identifier is "P521-SHA512".

Group: P-521 (secp521r1) [NISTCurves]

Order(): Return
Ox 01 fefretrre e et e e et ffa51868783bf2f966b7fcc0148f709a5d0
3bb5c9b8899c47aebb6fb71e91386409.

Identity(): As defined in [NISTCurves].

Generator(): As defined in [NISTCurves].

Davidson, et al. Informational Page 30

RFC 9497 OPRFs December 2023

RandomScalar(): Implemented by returning a uniformly random Scalar in the range [0,
G.Order () - 1]. Refer to Section 4.7 for implementation guidance.

HashToGroup(): Use hash_to_curve with suite P521_XMD:SHA-512_SSWU_RO_ [RFC9380] and
DST = "HashToGroup-" | | contextString.

HashToScalar(): Use hash_to_field from [RFC9380] using L = 98, expand_message_xmd with
SHA-512, DST = "HashToScalar-" | | contextString, and a prime modulus equal to
Group.Order().

ScalarInverse(s): Returns the multiplicative inverse of input Scalar s mod Group.Order ().

SerializeElement(A): Implemented using the compressed Elliptic-Curve-Point-to-Octet-String
method according to [SEC1]; Ne = 67.

DeserializeElement(buf): Implemented by attempting to deserialize a 67-byte input string to
a public key using the compressed Octet-String-to-Elliptic-Curve-Point method according to
[SEC1] and then performing partial public-key validation, as defined in Section 5.6.2.3.4 of
[KEYAGREEMENT]. This includes checking that the coordinates of the resulting point are in
the correct range, that the point is on the curve, and that the point is not the point at
infinity. Additionally, this function validates that the resulting element is not the group
identity element. If these checks fail, deserialization returns an InputValidationError
error.

SerializeScalar(s): Implemented using the Field-Element-to-Octet-String conversion
according to [SEC1]; Ns = 66.

DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar from a 66-byte
string using Octet-String-to-Field-Element from [SEC1]. This function can fail if the input
does not represent a Scalar in the range [0, G.Order () - 1].

Hash: SHA-512; Nh = 64.

4.6. Future Ciphersuites

A critical requirement of implementing the prime-order group using elliptic curves is a method
to instantiate the function HashToGroup, which maps inputs to group elements. In the elliptic
curve setting, this deterministically maps inputs (as byte arrays) to uniformly chosen points on
the curve.

In the security proof of the construction, Hash is modeled as a random oracle. This implies that
any instantiation of HashToGroup must be pre-image and collision resistant. In Section 4, we give
instantiations of this functionality based on the functions described in [RFC9380]. Consequently,
any OPRF implementation must adhere to the implementation and security considerations
discussed in [RFC9380] when instantiating the function.

The DeserializeElement and DeserializeScalar functions instantiated for a particular prime-
order group corresponding to a ciphersuite MUST adhere to the description in Section 2.1. Future
ciphersuites MUST describe how input validation is done for DeserializeElement and
DeserializeScalar.

Davidson, et al. Informational Page 31

RFC 9497 OPRFs December 2023

Additionally, future ciphersuites must take care when choosing the security level of the group.
See Section 7.2.3 for additional details.

4.7. Random Scalar Generation

Two popular algorithms for generating a random integer uniformly distributed in the range [0,
G.Order() - 1] are described in the following subsections.

4.7.1. Rejection Sampling

Generate a random byte array with Ns bytes and attempt to map to a Scalar by calling
DeserializeScalar in constant time. If it succeeds, return the result. If it fails, try again with
another random byte array until the procedure succeeds. Failure to implement
DeserializeScalar in constant time can leak information about the underlying corresponding
Scalar.

As an optimization, if the group order is very close to a power of 2, it is acceptable to omit the
rejection test completely. In particular, if the group order is p and there is an integer b such that

Ip- 2b | is less than 2/ 2), then RandomScalar can simply return a uniformly random integer of
at most b bits.

4.7.2. Random Number Generation Using Extra Random Bits

Generate a random byte array with L = ceil(((3 * ceil(log2(G.Order()))) / 2) / 8)
bytes, and interpret it as an integer; reduce the integer modulo G.Order (), and return the result.
See [RFC9380], Section 5 for the underlying derivation of L.

5. Application Considerations

This section describes considerations for applications, including external interface
recommendations, explicit error treatment, and public input representation for the POPRF
protocol variant.

5.1. Input Limits

Application inputs, expressed as PrivateInput or PublicInput values, MUST be smaller than 216

- 1 bytes in length. Applications that require longer inputs can use a cryptographic hash function
to map these longer inputs to a fixed-length input that fits within the PublicInput or
PrivateInput length bounds. Note that some cryptographic hash functions have input length
restrictions themselves, but these limits are often large enough to not be a concern in practice.

261

For example, SHA-256 has an input limit of bytes.

Davidson, et al. Informational Page 32

https://rfc-editor.org/rfc/rfc9380#section-5

RFC 9497 OPRFs December 2023

5.2. External Interface Recommendations

In Section 3.3, the interface of the protocol functions allows that some inputs (and outputs) to be
group Element and Scalar values. However, implementations can instead operate over Element
and Scalar values internally and only expose interfaces that operate with an application-specific
format of messages.

5.3. Error Considerations

Some OPRF variants specified in this document have fallible operations. For example, Finalize
and BlindEvaluate can fail if any element received from the peer fails input validation. The
explicit errors generated throughout this specification, along with the conditions that lead to
each error, are as follows:

VerifyError: Verifiable OPRF proof verification failed (Sections 3.3.2 and 3.3.3).
DeserializeError: Group Element or Scalar deserialization failure (Sections 2.1 and 3.3).

InputValidationError: Validation of byte array inputs failed (Section 4).

There are other explicit errors generated in this specification; however, they occur with
negligible probability in practice. We note them here for completeness.

InvalidInputError: OPRF Blind input produces an invalid output element (Sections 3.3.1 and
3.3.3).

InverseError: A tweaked private key is invalid, i.e., has no multiplicative inverse (Sections 2.1
and 3.3).

In general, the errors in this document are meant as a guide to implementors. They are not an
exhaustive list of all the errors an implementation might emit. For example, implementations
might run out of memory and return a corresponding error.

5.4. POPRF Public Input

Functionally, the VOPRF and POPRF variants differ in that the POPRF variant admits public input,
whereas the VOPRF variant does not. Public input allows clients and servers to cryptographically
bind additional data to the POPRF output. A POPRF with fixed public input is functionally
equivalent to a VOPRE. However, there are differences in the underlying security assumptions
made about each variant; see Section 7.2 for more details.

This public input is known to both parties at the start of the protocol. It is RECOMMENDED that
this public input be constructed with some type of higher-level domain separation to avoid cross
protocol attacks or related issues. For example, protocols using this construction might ensure
that the public input uses a unique, prefix-free encoding. See [RFC9380], Section 10.4 for further
discussion on constructing domain separation values.

Davidson, et al. Informational Page 33

https://rfc-editor.org/rfc/rfc9380#section-10.4

RFC 9497 OPRFs December 2023

Implementations of the POPRF may choose to not let applications control info in cases where
this value is fixed or otherwise not useful to the application. In this case, the resulting protocol is
functionally equivalent to the VOPRE, which does not admit public input.

6. TANA Considerations

This document has no IANA actions.

7. Security Considerations

This section discusses the security of the protocols defined in this specification, along with some
suggestions and trade-offs that arise from the implementation of the protocol variants in this
document. Note that the syntax of the POPRF variant is different from that of the OPRF and
VOPRF variants since it admits an additional public input, but the same security considerations

apply.

7.1. Security Properties

The security properties of an OPRF protocol with functionality y = F(k, x) include those of a
standard PRF. Specifically:

Pseudorandomness: For a random sampling of k, F is pseudorandom if the output y = F(k, X) on
any input x is indistinguishable from uniformly sampling any element in F's range.

In other words, consider an adversary that picks inputs X from the domain of F and evaluates F
on (k, x) (without knowledge of randomly sampled k). Then, the output distribution F(k, x) is
indistinguishable from the output distribution of a randomly chosen function with the same
domain and range.

A consequence of showing that a function is pseudorandom is that it is necessarily nonmalleable
(i.e., we cannot compute a new evaluation of F from an existing evaluation). A genuinely random
function will be nonmalleable with high probability, so a pseudorandom function must be
nonmalleable to maintain indistinguishability.

Unconditional input secrecy: The server does not learn anything about the client input X, even
with unbounded computation.

In other words, an attacker with infinite computing power cannot recover any information about
the client's private input x from an invocation of the protocol.

Essentially, input secrecy is the property that, even if the server learns the client's private input x
at some point in the future, the server cannot link any particular PRF evaluation to x. This
property is also known as unlinkability [DGSTV18].

Beyond client input secrecy, in the OPRF protocol, the server learns nothing about the output y of
the function, nor does the client learn anything about the server's private key k.

Davidson, et al. Informational Page 34

RFC 9497 OPRFs December 2023

For the VOPRF and POPRF protocol variants, there is an additional security property:

Verifiable: The client must only complete execution of the protocol if it can successfully assert
that the output it computes is correct. This is taken with respect to the private key held by the
server.

Any VOPRF or POPRF that satisfies the 'verifiable' security property is known as 'verifiable'. In
practice, the notion of verifiability requires that the server commits to the key before the actual
protocol execution takes place. Then, the client verifies that the server has used the key in the
protocol using this commitment. In the following, we may also refer to this commitment as a
public key.

Finally, the POPRF variant also has the following security property:

Partial obliviousness: The client and server must be able to perform the PRF on the client's
private and public input. Both the client and server know the public input, but similar to the
OPRF and VOPRF protocols, the server learns nothing about the client's private input or the
output of the function, and the client learns nothing about the server's private key.

This property becomes useful when dealing with key management operations, such as the
rotation of the server's keys. Note that partial obliviousness only applies to the POPRF variant
because neither the OPRF nor VOPRF variants accept public input to the protocol.

Since the POPRF variant has a different syntax than the OPRF and VOPRF variants, i.e., y = F(k, X,
info), the pseudorandomness property is generalized:

Pseudorandomness: For a random sampling of k, F is pseudorandom if the output y = F(k, x,
info) on any input pairs (%, info) is indistinguishable from uniformly sampling any element in
F's range.

7.2. Security Assumptions

Below, we discuss the cryptographic security of each protocol variant from Section 3, relative to
the necessary cryptographic assumptions that need to be made.

7.2.1. OPRF and VOPRF Assumptions

The OPRF and VOPRF protocol variants in this document are based on [JKK14]. In particular, the
VOPRF construction is similar to the [JKK14] construction with the following distinguishing
properties:

1. This document does not use session identifiers to differentiate different instances of the
protocol.

2. This document supports batching so that multiple evaluations can happen at once whilst
only constructing one DLEQ proof object. This is enabled using an established batching
technique [DGSTV18].

Davidson, et al. Informational Page 35

RFC 9497 OPRFs December 2023

The pseudorandomness and input secrecy (and verifiability) of the OPRF (and VOPRF) protocols
in [JKK14] are based on the One-More Gap Computational Diffie-Hellman assumption that is
computationally difficult to solve in the corresponding prime-order group. In [JKK14], these
properties are proven for one instance (i.e., one key) of the VOPRF protocol and without
batching. There is currently no security analysis available for the VOPRF protocol described in
this document in a setting with multiple server keys or batching.

7.2.2. POPRF Assumptions

The POPRF construction in this document is based on the construction known as 3HashSDHI,
given by [TCRSTW21]. The construction is identical to 3HashSDHI, except that this design can
optionally perform multiple POPRF evaluations in one batch, whilst only constructing one DLEQ
proof object. This is enabled using an established batching technique [DGSTV18].

Pseudorandomness, input secrecy, verifiability, and partial obliviousness of the POPRF variant is
based on the assumption that the One-More Gap Strong Diffie-Hellman Inversion (SDHI)
assumption from [TCRSTW21] is computationally difficult to solve in the corresponding prime-
order group. Tyagi et al. [TCRSTW21] show that both the One-More Gap Computational Diffie-
Hellman assumption and the One-More Gap SDHI assumption reduce to the q-DL (Discrete Log)
assumption in the algebraic group model for some q number of BlindEvaluate queries. (The
One-More Gap Computational Diffie-Hellman assumption was the hardness assumption used to
evaluate the OPRF and VOPRF designs based on [JKK14], which is a predecessor to the POPRF
variant in Section 3.3.3.)

7.2.3. Static Diffie-Hellman Attack and Security Limits

A side effect of the OPRF protocol variants in this document is that they allow instantiation of an
oracle for constructing static Diffie-Hellman (DH) samples; see [BG04] and [Cheon06]. These
attacks are meant to recover (bits of) the server private key. Best-known attacks reduce the
security of the prime-order group instantiation by log_2(Q) / 2 bits, where Q is the number of
BlindEvaluate calls made by the attacker.

As a result of this class of attacks, choosing prime-order groups with a 128-bit security level
instantiates an OPRF with a reduced security level of 128 - (log_2(Q) / 2) bits of security.
Moreover, such attacks are only possible for those certain applications where the adversary can
query the OPRF directly. Applications can mitigate against this problem in a variety of ways, e.g.,
by rate-limiting client queries to BlindEvaluate or by rotating private keys. In applications
where such an oracle is not made available, this security loss does not apply.

In most cases, it would require an informed and persistent attacker to launch a highly expensive
attack to reduce security to anything much below 100 bits of security. Applications that admit the
aforementioned oracle functionality and that cannot tolerate discrete logarithm security of lower
than 128 bits are RECOMMENDED to choose groups that target a higher security level, such as
decaf448 (used by ciphersuite decaf448-SHAKE256), P-384 (used by ciphersuite P384-SHA384), or
P-521 (used by ciphersuite P521-SHA512).

Davidson, et al. Informational Page 36

RFC 9497 OPRFs December 2023

7.3. Domain Separation

Applications SHOULD construct input to the protocol to provide domain separation. Any system
that has multiple OPRF applications should distinguish client inputs to ensure the OPRF results
are separate. Guidance for constructing info can be found in [RFC9380], Section 3.1.

7.4. Timing Leaks

To ensure no information is leaked during protocol execution, all operations that use secret data
MUST run in constant time. This includes all prime-order group operations and proof-specific
operations that operate on secret data, including GenerateProof and BlindEvaluate.

8. References

8.1. Normative References

[KEYAGREEMENT] Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R. Davis,
"Recommendation for pair-wise key-establishment schemes using discrete
logarithm cryptography"”, NIST SP 800-56A (Rev. 3), DOI 10.6028/nist.sp.
800-56ar3, April 2018, <https://doi.org/10.6028/nist.sp.800-56ar3>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA
Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017,
November 2016, <https://www.rfc-editor.org/info/rfc8017>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

[RFC9380] Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S., and C. A. Wood, "Hashing
to Elliptic Curves", RFC 9380, DOI 10.17487/RFC9380, August 2023, <https://
www.rfc-editor.org/info/rfc9380>.

[RFC9496] de Valence, H., Grigg, J., Hamburg, M., Lovecruft, 1., Tankersley, G., and F.
Valsorda, "The ristretto255 and decaf448 Groups", RFC 9496, DOI 10.17487/
RFC9496, December 2023, <https://www.rfc-editor.org/info/rfc9496>.

8.2. Informative References

[BG04] Brown, D. and R. Gallant, "The Static Diffie-Hellman Problem", November 2004,
<https://eprint.iacr.org/2004/306>.

Davidson, et al. Informational Page 37

https://rfc-editor.org/rfc/rfc9380#section-3.1
https://doi.org/10.6028/nist.sp.800-56ar3
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9380
https://www.rfc-editor.org/info/rfc9380
https://www.rfc-editor.org/info/rfc9496
https://eprint.iacr.org/2004/306

RFC 9497

OPRFs December 2023

[ChaumPedersen] Chaum, D. and T. Pedersen, "Wallet Databases with Observers", Advances in

[Cheon06]

[DGSTV18]

[FS00]

[JKK14]

[JKKX16]

[NISTCurves]

[OPAQUE]

Cryptology - CRYPTO' 92, pp. 89-105, DOI 10.1007/3-540-48071-4_7, August 1992,
<https://doi.org/10.1007/3-540-48071-4_7>.

Cheon, J., "Security Analysis of the Strong Diffie-Hellman Problem", Advances in
Cryptology - EUROCRYPT 2006, pp. 1-11, DOI 10.1007/11761679_1, 2006, <https://
doi.org/10.1007/11761679_1>.

Davidson, A., Goldberg, 1., Sullivan, N., Tankersley, G., and F. Valsorda, "Privacy
Pass: Bypassing Internet Challenges Anonymously", Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 3, pp. 164-180, DOI 10.1515/
popets-2018-0026, April 2018, <https://doi.org/10.1515/popets-2018-0026>.

Fiat, A. and A. Shamir, "How To Prove Yourself: Practical Solutions to
Identification and Signature Problems", Advances in Cryptology - CRYPTO' 86,
Pp- 186-194, DOI 10.1007/3-540-47721-7_12, 1986, <https://doi.org/
10.1007/3-540-47721-7_12>.

Jarecki, S., Kiayias, A., and H. Krawczyk, "Round-Optimal Password-Protected
Secret Sharing and T-PAKE in the Password-Only Model", Lecture Notes in
Computer Science, pp. 233-253, DOI 10.1007/978-3-662-45608-8_13, 2014, <https://
doi.org/10.1007/978-3-662-45608-8_13>.

Jarecki, S., Kiayias, A., Krawczyk, H., and J. Xu, "Highly-Efficient and Composable
Password-Protected Secret Sharing (Or: How to Protect Your Bitcoin Wallet
Online)", 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
DOI 10.1109/eurosp.2016.30, March 2016, <https://doi.org/10.1109/eurosp.
2016.30>.

National Institute of Standards and Technology (NIST), "Digital Signature
Standard (DSS)", FIPS PUB 186-5, DOI 10.6028/NIST.FIPS.186-5, February 2023,
<https://doi.org/10.6028/NIST.FIPS.186-5>.

Bourdrez, D., Krawczyk, H., Lewi, K., and C. A. Wood, "The OPAQUE Asymmetric
PAKE Protocol", Work in Progress, Internet-Draft, draft-irtf-cfrg-opaque-13, 18
December 2023, <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-13>.

[PRIVACY-PASS] Celi, S., Davidson, A., Valdez, S., and C. A. Wood, "Privacy Pass Issuance

[PrivacyPass]

[RFC7748]

[SEC1]

Davidson, et al.

Protocol", Work in Progress, Internet-Draft, draft-ietf-privacypass-protocol-16, 3
October 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-
protocol-16>.

"Privacy Pass", commit 085380a, March 2018, <https://github.com/privacypass/
team>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748,
DOI 10.17487/RFC7748, January 2016, <https://www.rfc-editor.org/info/rfc7748>.

Standards for Efficient Cryptography Group (SECG), "SEC 1: Elliptic Curve
Cryptography", May 2009, <https://www.secg.org/sec1-v2.pdf>.

Informational Page 38

https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/11761679_1
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1109/eurosp.2016.30
https://doi.org/10.1109/eurosp.2016.30
https://doi.org/10.6028/NIST.FIPS.186-5
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-13
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-16
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-16
https://github.com/privacypass/team
https://github.com/privacypass/team
https://www.rfc-editor.org/info/rfc7748
https://www.secg.org/sec1-v2.pdf

RFC 9497 OPRFs December 2023

[SJKS17] Shirvanian, M., Jarecki, S., Krawczyk, H., and N. Saxena, "SPHINX: A Password
Store that Perfectly Hides Passwords from Itself", 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), DOI 10.1109/ICDCS.
2017.64, June 2017, <https://doi.org/10.1109/ICDCS.2017.64>.

[TCRSTW21] Tyagi, N,, Celj, S., Ristenpart, T., Sullivan, N., Tessaro, S., and C. A. Wood, "A Fast
and Simple Partially Oblivious PRF, with Applications", Advances in Cryptology -
EUROCRYPT 2022 pp. 674-705, DOI 10.1007/978-3-031-07085-3_23, May 2022,
<https://doi.org/10.1007/978-3-031-07085-3_23>.

Appendix A. Test Vectors

This section includes test vectors for the protocol variants specified in this document. For each
ciphersuite specified in Section 4, there is a set of test vectors for the protocol when running the
OPREF, VOPRF, and POPRF modes. Each test vector lists the batch size for the evaluation. Each test
vector value is encoded as a hexadecimal byte string. The fields of each test vector are described
below.

"Input": The private client input, an opaque byte string.

"Info": The public info, an opaque byte string. Only present for POPRF test vectors.

"Blind": The blind value output by B1ind(), a serialized Scalar of Ns bytes long.
"BlindedElement": The blinded value output by Blind(), a serialized Element of Ne bytes long.

"EvaluatedElement": The evaluated element output by BlindEvaluate(), a serialized Element
of Ne bytes long.

"Proof": The serialized Proof output from GenerateProof () composed of two serialized Scalar
values, each Ns bytes long. Only present for VOPRF and POPRF test vectors.

"ProofRandomScalar”: The random Scalar r computed in GenerateProof (), a serialized Scalar
of Ns bytes long. Only present for VOPRF and POPRF test vectors.

"Output": The protocol output, an opaque byte string of Nh bytes long.

Test vectors with batch size B > 1 have inputs separated by a comma ",". Applicable test vectors
will have B different values for the "Input”, "Blind", "BlindedElement", "EvaluationElement", and
"Output” fields.

The server key material, pkSm and skSm, are listed under the mode for each ciphersuite. Both
pkSm and skSm are the serialized values of pkS and skS, respectively, as used in the protocol. Each
key pair is derived from a seed, denoted Seed, and info string, denoted KeyInfo, which are listed
as well, using the DeriveKeyPair function from Section 3.2.

Davidson, et al. Informational Page 39

https://doi.org/10.1109/ICDCS.2017.64
https://doi.org/10.1007/978-3-031-07085-3_23

RFC 9497 OPRFs December 2023

A.1. ristretto255-SHA512
A.1.1. OPRF Mode

Seed = a3a
3a3

KeyInfo = 74657374206b6579

skSm = 5ebceab5ee37023ccb9fc2d2019f9d7737be85591ae8652ffa%ef0f4d37063
boe

A.1.1.1. Test Vector 1, Batch Size 1

Input
Blind
6706
BlindedElement = 609aBae68c15a3cf6903766461307e5c8bb2f95e7e6550e1ffa
2dc99e412803c

EvaluationElement = 7ec6578ae5120958eb2db1745758ff379e77cb64fe77b0Ob2
d8cc917eab869c7e

Output = 527759¢3d9366f277d8c6020418d96bb393ba2afb20ff90df23fh770826
4e2f3ab9135e3bd69955851de4b1f9fe8ab973396719b7912ba%ee8aa7dBb5e24bcf
6

= 00
= 64d37aed22a27f5191de1c1d69fadb899d8862b58eb4220029e036ec4c1f

A.1.1.2. Test Vector 2, Batch Size 1

Input = S5aba5ab5a5a5ab5aba5a5ab5a5ababab5adaba

Blind = 64d37aed22a27f5191de1c1d69fadb899d8862b58eb4220029e036ec4c1f
6706

BlindedElement = da27ef466870f5f15296299850aa088629945a17d1f5b7f5ff0
43f76b3c06418

EvaluationElement = b4cbf5a4fleeda5a63ce7b77¢c7d23f461db3fcabddd28e4e
17cecb5c90d02c25

Output = f4a74c9c592497375e796aa837e907b1a045d34306a749db9134221f7e7
50cb4f2a6413a6bf6fa5e19ba6348eb673934a722a7ede2e7621306d18951e7cf2c7
3

A.1.2. VOPRF Mode

Seed = a3a3a3a3a3a3a3a3a3a3a3a3al3a3a3al3a3a3a3a3a3al3a3a3al3a3a3al3a3a3a
3a3

KeyInfo = 74657374206b6579

skSm = e6f731f344b79b379f1a0dd37e07ff62e38d9f71345ce62ae3a9bc60bB4ccd
909

pkSm = c803e2cc6bB5fc15064549b5920659cad4a77b2ccab6f04f6b3570093354764a
d4de

Davidson, et al. Informational Page 40

RFC 9497 OPRFs December 2023

A.1.2.1. Test Vector 1, Batch Size 1

Input
Blind
6706
BlindedElement = 863f330ccl1al259ed5a5998a23acfd37fb4351a793a5b3¢c090b
642ddc439b945

EvaluationElement = aa8faB48764d5623868679402ff6108d2521884fa138cd7f
9¢c7669a9a014267e

Proof = ddef93772692e535d1a53903db24367355¢cc2cc78de93b3be5a8ffcc6985
dde66d4346421d17bf5117a2al1ffefcb2a759f58a539dfbe857a40bcedcf49ec600d
ProofRandomScalar = 222a5e897cf59db8145db8d16e597e8facb80ae7d