patch-1.3.45 linux/include/asm-ppc/pgtable.h

Next file: linux/include/asm-ppc/processor.h
Previous file: linux/include/asm-ppc/param.h
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v1.3.44/linux/include/asm-ppc/pgtable.h linux/include/asm-ppc/pgtable.h
@@ -0,0 +1,505 @@
+/* * Last edited: Nov  7 23:44 1995 (cort) */
+#ifndef _PPC_PGTABLE_H
+#define _PPC_PGTABLE_H
+
+#include <asm/page.h>
+#include <asm/mmu.h>
+
+/*
+ * Memory management on the PowerPC is a software emulation of the i386
+ * MMU folded onto the PowerPC hardware MMU.  The emulated version looks
+ * and behaves like the two-level i386 MMU.  Entries from these tables
+ * are merged into the PowerPC hashed MMU tables, on demand, treating the
+ * hashed tables like a special cache.
+ *
+ * Since the PowerPC does not have separate kernel and user address spaces,
+ * the user virtual address space must be a [proper] subset of the kernel
+ * space.  Thus, all tasks will have a specific virtual mapping for the
+ * user virtual space and a common mapping for the kernel space.  The
+ * simplest way to split this was literally in half.  Also, life is so
+ * much simpler for the kernel if the machine hardware resources are
+ * always mapped in.  Thus, some additional space is given up to the
+ * kernel space to accomodate this.
+ *
+ * CAUTION! Some of the trade-offs make sense for the PreP platform on
+ * which this code was originally developed.  When it migrates to other
+ * PowerPC environments, some of the assumptions may fail and the whole
+ * setup may need to be reevaluated.
+ *
+ * On the PowerPC, page translations are kept in a hashed table.  There
+ * is exactly one of these tables [although the architecture supports
+ * an arbitrary number].  Page table entries move in/out of this hashed
+ * structure on demand, with the kernel filling in entries as they are
+ * needed.  Just where a page table entry hits in the hashed table is a
+ * function of the hashing which is in turn based on the upper 4 bits
+ * of the logical address.  These 4 bits address a "virtual segment id"
+ * which is unique per task/page combination for user addresses and
+ * fixed for the kernel addresses.  Thus, the kernel space can be simply
+ * shared [indeed at low overhead] amoung all tasks.
+ *
+ * The basic virtual address space is thus:
+ *
+ * 0x0XXXXXX  --+
+ * 0x1XXXXXX    |
+ * 0x2XXXXXX    |  User address space. 
+ * 0x3XXXXXX    |
+ * 0x4XXXXXX    |
+ * 0x5XXXXXX    |
+ * 0x6XXXXXX    |
+ * 0x7XXXXXX  --+
+ * 0x8XXXXXX       PCI/ISA I/O space
+ * 0x9XXXXXX  --+
+ * 0xAXXXXXX    |  Kernel virtual memory
+ * 0xBXXXXXX  --+
+ * 0xCXXXXXX       PCI/ISA Memory space
+ * 0xDXXXXXX
+ * 0xEXXXXXX
+ * 0xFXXXXXX       Board I/O space
+ *
+ * CAUTION!  One of the real problems here is keeping the software
+ * managed tables coherent with the hardware hashed tables.  When
+ * the software decides to update the table, it's normally easy to
+ * update the hardware table.  But when the hardware tables need
+ * changed, e.g. as the result of a page fault, it's more difficult
+ * to reflect those changes back into the software entries.  Currently,
+ * this process is quite crude, with updates causing the entire set
+ * of tables to become invalidated.  Some performance could certainly
+ * be regained by improving this.
+ *
+ * The Linux memory management assumes a three-level page table setup. On
+ * the i386, we use that, but "fold" the mid level into the top-level page
+ * table, so that we physically have the same two-level page table as the
+ * i386 mmu expects.
+ *
+ * This file contains the functions and defines necessary to modify and use
+ * the i386 page table tree.
+ */
+
+/* PMD_SHIFT determines the size of the area a second-level page table can map */
+#define PMD_SHIFT	22
+#define PMD_SIZE	(1UL << PMD_SHIFT)
+#define PMD_MASK	(~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT	22
+#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
+#define PGDIR_MASK	(~(PGDIR_SIZE-1))
+
+/*
+ * entries per page directory level: the i386 is two-level, so
+ * we don't really have any PMD directory physically.
+ */
+#define PTRS_PER_PTE	1024
+#define PTRS_PER_PMD	1
+#define PTRS_PER_PGD	1024
+
+/* Just any arbitrary offset to the start of the vmalloc VM area: the
+ * current 8MB value just means that there will be a 8MB "hole" after the
+ * physical memory until the kernel virtual memory starts.  That means that
+ * any out-of-bounds memory accesses will hopefully be caught.
+ * The vmalloc() routines leaves a hole of 4kB between each vmalloced
+ * area for the same reason. ;)
+ */
+#define VMALLOC_OFFSET	(8*1024*1024)
+#define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+
+#define _PAGE_PRESENT	0x001
+#define _PAGE_RW	0x002
+#define _PAGE_USER	0x004
+#define _PAGE_PCD	0x010
+#define _PAGE_ACCESSED	0x020
+#define _PAGE_DIRTY	0x040
+#define _PAGE_COW	0x200	/* implemented in software (one of the AVL bits) */
+
+#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
+#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
+
+#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
+#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
+#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_COW)
+#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
+#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
+
+/*
+ * The i386 can't do page protection for execute, and considers that the same are read.
+ * Also, write permissions imply read permissions. This is the closest we can get..
+ */
+#define __P000	PAGE_NONE
+#define __P001	PAGE_READONLY
+#define __P010	PAGE_COPY
+#define __P011	PAGE_COPY
+#define __P100	PAGE_READONLY
+#define __P101	PAGE_READONLY
+#define __P110	PAGE_COPY
+#define __P111	PAGE_COPY
+
+#define __S000	PAGE_NONE
+#define __S001	PAGE_READONLY
+#define __S010	PAGE_SHARED
+#define __S011	PAGE_SHARED
+#define __S100	PAGE_READONLY
+#define __S101	PAGE_READONLY
+#define __S110	PAGE_SHARED
+#define __S111	PAGE_SHARED
+
+/*
+ * Define this if things work differently on a i386 and a i486:
+ * it will (on a i486) warn about kernel memory accesses that are
+ * done without a 'verify_area(VERIFY_WRITE,..)'
+ */
+#undef CONFIG_TEST_VERIFY_AREA
+
+/* page table for 0-4MB for everybody */
+extern unsigned long pg0[1024];
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t __bad_page(void);
+extern pte_t * __bad_pagetable(void);
+
+extern unsigned long __zero_page(void);
+
+#define BAD_PAGETABLE __bad_pagetable()
+#define BAD_PAGE __bad_page()
+#define ZERO_PAGE __zero_page()
+
+/* number of bits that fit into a memory pointer */
+#define BITS_PER_PTR			(8*sizeof(unsigned long))
+
+/* to align the pointer to a pointer address */
+#define PTR_MASK			(~(sizeof(void*)-1))
+
+/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
+/* 64-bit machines, beware!  SRB. */
+#define SIZEOF_PTR_LOG2			2
+
+/* to find an entry in a page-table */
+#define PAGE_PTR(address) \
+((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
+
+/* to set the page-dir */
+/* tsk is a task_struct and pgdir is a pte_t */
+#define SET_PAGE_DIR(tsk,pgdir) \
+do { \
+	(tsk)->tss.pg_tables = (unsigned long *)(pgdir); \
+	if ((tsk) == current) \
+	{ \
+/*_printk("Change page tables = %x\n", pgdir);*/ \
+	} \
+} while (0)
+
+extern unsigned long high_memory;
+
+extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
+extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_PRESENT; }
+extern inline int pte_inuse(pte_t *ptep)	{ return mem_map[MAP_NR(ptep)].reserved; }
+/*extern inline int pte_inuse(pte_t *ptep)	{ return mem_map[MAP_NR(ptep)] != 1; }*/
+extern inline void pte_clear(pte_t *ptep)	{ pte_val(*ptep) = 0; }
+extern inline void pte_reuse(pte_t * ptep)
+{
+	if (!mem_map[MAP_NR(ptep)].reserved)
+		mem_map[MAP_NR(ptep)].count++;
+}
+/*
+   extern inline void pte_reuse(pte_t * ptep)
+{
+	if (!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED))
+		mem_map[MAP_NR(ptep)]++;
+}
+*/
+extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); }
+extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE; }
+extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_PRESENT; }
+extern inline int pmd_inuse(pmd_t *pmdp)	{ return 0; }
+extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; }
+extern inline void pmd_reuse(pmd_t * pmdp)	{ }
+
+/*
+ * The "pgd_xxx()" functions here are trivial for a folded two-level
+ * setup: the pgd is never bad, and a pmd always exists (as it's folded
+ * into the pgd entry)
+ */
+extern inline int pgd_none(pgd_t pgd)		{ return 0; }
+extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
+extern inline int pgd_present(pgd_t pgd)	{ return 1; }
+/*extern inline int pgd_inuse(pgd_t * pgdp)	{ return mem_map[MAP_NR(pgdp)] != 1; }*/
+extern inline int pgd_inuse(pgd_t *pgdp)	{ return mem_map[MAP_NR(pgdp)].reserved;  }
+extern inline void pgd_clear(pgd_t * pgdp)	{ }
+
+/*
+extern inline void pgd_reuse(pgd_t * pgdp)
+{
+	if (!mem_map[MAP_NR(pgdp)].reserved)
+		mem_map[MAP_NR(pgdp)].count++;
+}
+*/
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
+extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
+extern inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
+extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
+extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
+extern inline int pte_cow(pte_t pte)		{ return pte_val(pte) & _PAGE_COW; }
+
+extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_RW; return pte; }
+extern inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
+extern inline pte_t pte_exprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
+extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
+extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
+extern inline pte_t pte_uncow(pte_t pte)	{ pte_val(pte) &= ~_PAGE_COW; return pte; }
+extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_RW; return pte; }
+extern inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
+extern inline pte_t pte_mkexec(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
+extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
+extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
+extern inline pte_t pte_mkcow(pte_t pte)	{ pte_val(pte) |= _PAGE_COW; return pte; }
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
+{ pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; }
+
+extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
+
+/*extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
+{ pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
+*/
+extern inline unsigned long pte_page(pte_t pte)
+{ return pte_val(pte) & PAGE_MASK; }
+
+extern inline unsigned long pmd_page(pmd_t pmd)
+{ return pmd_val(pmd) & PAGE_MASK; }
+
+
+/* to find an entry in a page-table-directory */
+extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
+{
+	return mm->pgd + (address >> PGDIR_SHIFT);
+}
+
+/* Find an entry in the second-level page table.. */
+extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
+{
+	return (pmd_t *) dir;
+}
+
+/* Find an entry in the third-level page table.. */ 
+extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
+{
+	return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+}
+
+
+/*
+ * Allocate and free page tables. The xxx_kernel() versions are
+ * used to allocate a kernel page table - this turns on ASN bits
+ * if any, and marks the page tables reserved.
+ */
+extern inline void pte_free_kernel(pte_t * pte)
+{
+	mem_map[MAP_NR(pte)].reserved = 1;
+	free_page((unsigned long) pte);
+}
+/*extern inline void pte_free_kernel(pte_t * pte)
+{
+	mem_map[MAP_NR(pte)] = 1;
+	free_page((unsigned long) pte);
+}
+*/
+
+/*
+extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
+{
+	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+	if (pmd_none(*pmd)) {
+		pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
+		if (pmd_none(*pmd)) {
+			if (page) {
+				pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
+				mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED;
+				return page + address;
+			}
+			pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
+			return NULL;
+		}
+		free_page((unsigned long) page);
+	}
+	if (pmd_bad(*pmd)) {
+		printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
+		pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
+		return NULL;
+	}
+	return (pte_t *) pmd_page(*pmd) + address;
+}*/
+/*
+extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+{
+printk("pte_alloc_kernel pmd = %08X, address = %08X\n", pmd, address);
+	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+printk("address now = %08X\n", address);
+	if (pmd_none(*pmd)) {
+		pte_t *page;
+printk("pmd_none(*pmd) true\n");
+		page = (pte_t *) get_free_page(GFP_KERNEL);
+printk("page = %08X after get_free_page(%08X)\n",page,GFP_KERNEL);
+		if (pmd_none(*pmd)) {
+printk("pmd_none(*pmd=%08X) still\n",*pmd);		  
+			if (page) {
+printk("page true = %08X\n",page);			  
+				pmd_set(pmd, page);
+printk("pmd_set(%08X,%08X)\n",pmd,page);			  
+				mem_map[MAP_NR(page)].reserved = 1;
+printk("did mem_map\n",pmd,page);			  
+				return page + address;
+			}
+printk("did pmd_set(%08X, %08X\n",pmd,BAD_PAGETABLE);			  
+			pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
+			return NULL;
+		}
+printk("did free_page(%08X)\n",page);			  		
+		free_page((unsigned long) page);
+	}
+	if (pmd_bad(*pmd)) {
+		printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
+		pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
+		return NULL;
+	}
+printk("returning pmd_page(%08X) + %08X\n",pmd_page(*pmd) , address);	  
+
+	return (pte_t *) pmd_page(*pmd) + address;
+}
+*/
+extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
+{
+	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+	if (pmd_none(*pmd)) {
+		pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
+		if (pmd_none(*pmd)) {
+			if (page) {
+/*                                pmd_set(pmd,page);*/
+			pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
+				mem_map[MAP_NR(page)].reserved = 1;
+				return page + address;
+			}
+/*			pmd_set(pmd, BAD_PAGETABLE);*/
+			pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
+			return NULL;
+		}
+		free_page((unsigned long) page);
+	}
+	if (pmd_bad(*pmd)) {
+		printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
+/*		pmd_set(pmd, (pte_t *) BAD_PAGETABLE);		*/
+		pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
+		return NULL;
+	}
+	return (pte_t *) pmd_page(*pmd) + address;
+}
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+extern inline void pmd_free_kernel(pmd_t * pmd)
+{
+}
+
+extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
+{
+	return (pmd_t *) pgd;
+}
+
+extern inline void pte_free(pte_t * pte)
+{
+	free_page((unsigned long) pte);
+}
+
+extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
+{
+	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+	if (pmd_none(*pmd)) {
+		pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
+		if (pmd_none(*pmd)) {
+			if (page) {
+				pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
+				return page + address;
+			}
+			pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
+			return NULL;
+		}
+		free_page((unsigned long) page);
+	}
+	if (pmd_bad(*pmd)) {
+		printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
+		pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
+		return NULL;
+	}
+	return (pte_t *) pmd_page(*pmd) + address;
+}
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+extern inline void pmd_free(pmd_t * pmd)
+{
+}
+
+extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
+{
+	return (pmd_t *) pgd;
+}
+
+extern inline void pgd_free(pgd_t * pgd)
+{
+	free_page((unsigned long) pgd);
+}
+
+extern inline pgd_t * pgd_alloc(void)
+{
+	return (pgd_t *) get_free_page(GFP_KERNEL);
+}
+
+extern pgd_t swapper_pg_dir[1024*8];
+/*extern pgd_t *swapper_pg_dir;*/
+
+/*
+ * Software maintained MMU tables may have changed -- update the
+ * hardware [aka cache]
+ */
+extern inline void update_mmu_cache(struct vm_area_struct * vma,
+	unsigned long address, pte_t _pte)
+{
+#if 0
+	printk("Update MMU cache - VMA: %x, Addr: %x, PTE: %x\n", vma, address, *(long *)&_pte);
+	_printk("Update MMU cache - VMA: %x, Addr: %x, PTE: %x\n", vma, address, *(long *)&_pte);
+/*	MMU_hash_page(&(vma->vm_task)->tss, address & PAGE_MASK, (pte *)&_pte);*/
+#endif	
+	MMU_hash_page(&(current)->tss, address & PAGE_MASK, (pte *)&_pte);
+
+}
+
+
+#ifdef _SCHED_INIT_
+#define INIT_MMAP { &init_task, 0, 0x40000000, PAGE_SHARED, VM_READ | VM_WRITE | VM_EXEC }
+
+#endif	
+
+#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
+#define SWP_OFFSET(entry) ((entry) >> 8)
+#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
+
+#endif /* _PPC_PAGE_H */

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov with Sam's (original) version
of this