1 | /*************************************** 2 | $Revision: 1.27 $ 3 | 4 | IP handling (ip). ip.c - conversions between ascii and binary forms 5 | of IP addresses, prefixes and ranges. 6 | 7 | various operations on binary forms. 8 | 9 | Status: NOT REVUED, TESTED, COMPLETE 10 | 11 | Design and implementation by: Marek Bukowy 12 | 13 | ******************/ /****************** 14 | Copyright (c) 1999 RIPE NCC 15 | 16 | All Rights Reserved 17 | 18 | Permission to use, copy, modify, and distribute this software and its 19 | documentation for any purpose and without fee is hereby granted, 20 | provided that the above copyright notice appear in all copies and that 21 | both that copyright notice and this permission notice appear in 22 | supporting documentation, and that the name of the author not be 23 | used in advertising or publicity pertaining to distribution of the 24 | software without specific, written prior permission. 25 | 26 | THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING 27 | ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS; IN NO EVENT SHALL 28 | AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY 29 | DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN 30 | AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 31 | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 32 | ***************************************/ 33 | 34 | #define IP_IMPL 35 | #include <iproutines.h> 36 | #include <string.h> 37 | #include <stdio.h> 38 | #include <erroutines.h> 39 | 40 | #include <ctype.h> 41 | #include <memwrap.h> 42 | 43 | #include <numconv.h> 44 | #include <stubs.h> 45 | 46 | #include <sys/socket.h> 47 | #include <netinet/in.h> 48 | 49 | #include <inet6def.h> 50 | #include <sys/param.h> 51 | 52 | /**************************************************************************/ 53 | /*+ return the max. length of bits per space 54 | 55 | Yes, it *could* be a macro - but as a function it can detect 56 | more programmer's errors. And will get inlined anyway. 57 | 58 | +*/ 59 | 60 | int IP_sizebits(ip_space_t spc_id) { 61 | switch (spc_id) { 62 | case IP_V4: 63 | return 32; 64 | case IP_V6: 65 | return 128; 66 | default: 67 | /* die; */ /* error: bad IP version specified */ 68 | return -1; 69 | } 70 | } 71 | 72 | static 73 | er_ret_t 74 | ip_rang_validate(ip_range_t *rangptr) 75 | { 76 | if( rangptr->begin.space != rangptr->end.space ) { 77 | /* die; */ /* incompatible IP spaces */ 78 | return IP_INVRAN; 79 | } 80 | 81 | /* XXX IPv6 range check missing */ 82 | if( rangptr->begin.space == IP_V4 ) { 83 | if( rangptr->begin.words[0] > rangptr->end.words[0] ) { 84 | return IP_INVRAN; 85 | } 86 | } 87 | 88 | return IP_OK; 89 | } 90 | /**************************************************************************/ 91 | /*+ 92 | ascii IP address to binary. 93 | 94 | In IP_EXPN mode IP will be "expanded" 95 | (missing octets will be set to 0, MSB's will be set). 96 | In IP_PLAIN mode the routine will complain if it sees less octets. 97 | 98 | why not use the standard inet_blabla routine ? 99 | it's because if some octets are missing, we make the address zero-padded 100 | (unlike the inet_blabla, which puts zeros in the middle). We also want 101 | to control the expansion with a flag. 102 | 103 | +*/ 104 | 105 | er_ret_t 106 | IP_addr_t2b(ip_addr_t *ipptr, char *addr, ip_exp_t expf) 107 | { 108 | if( index(addr, ':') == NULL ) { 109 | /* IPv4 */ 110 | char *dot=addr; 111 | unsigned len, byte, result=0; 112 | char cpy[4]; 113 | int last = 0, dotsfound=0; 114 | int bytes=0; 115 | 116 | if( expf != IP_PLAIN && expf != IP_EXPN ) { 117 | return IP_INVARG; 118 | } 119 | 120 | do { 121 | char *olddot = dot+1; 122 | /* dot should point to the "end of this number", not necessarily a dot */ 123 | 124 | if ( (dot = index (addr, '.')) == NULL) { 125 | /* after the ip it can contain lots of junk spaces */ 126 | while( *olddot != 0 && ! isspace(* (unsigned char *) olddot) ) { 127 | olddot++; 128 | } 129 | dot = olddot; 130 | last = 1; 131 | } 132 | else { 133 | if( ++dotsfound > 3 ) { 134 | /* handle syntax ERROR - too many dots found */ 135 | return IP_INVIP4; 136 | } 137 | } 138 | 139 | if ((len = dot - addr) > 3) { 140 | /* syntax ERROR - too many digits in an octet */ 141 | return IP_INVIP4; 142 | } 143 | strncpy( cpy, addr, len ); 144 | cpy[len]=0; 145 | 146 | /* sscanf is waay too slow */ 147 | 148 | if( ut_dec_2_uns(cpy, &byte) < 0 ) { 149 | /* handle syntax ERROR - invalid characters found */ 150 | return IP_INVIP4; 151 | } 152 | 153 | 154 | if( byte > 255 ) { 155 | /* handle syntax ERROR - number between dots too high */ 156 | return IP_INVIP4; 157 | } 158 | 159 | result <<= 8; 160 | result += byte; 161 | bytes++; 162 | 163 | addr = dot + 1; 164 | } while (!last); 165 | 166 | if( expf == IP_PLAIN ) { 167 | if( bytes!=4 ) { 168 | return IP_INVIP4; 169 | } 170 | } 171 | else { 172 | while( bytes<4 ) { 173 | result <<= 8; 174 | bytes++; 175 | } 176 | } 177 | 178 | memset(ipptr, 0, sizeof(ip_addr_t)); 179 | ipptr->space = IP_V4; 180 | ipptr->words[0] = result; 181 | } 182 | else { 183 | /* IPv6 */ 184 | #define _IPV6_LENGTH 128 185 | char addrcpy[_IPV6_LENGTH]; 186 | char *ch, *start; 187 | int i; 188 | 189 | strncpy(addrcpy, addr, _IPV6_LENGTH-1); 190 | addrcpy[_IPV6_LENGTH-1] = 0; 191 | 192 | /* get rid of superfluous whitespaces */ 193 | /* leading... */ 194 | for( ch = start = addrcpy ; *ch != 0; ch++ ) { 195 | if( isspace( (int) *ch) ) { 196 | start++; 197 | } 198 | else { 199 | break; 200 | } 201 | } 202 | 203 | /* and trailing */ 204 | while( *ch != 0 ) { 205 | if( isspace( (int) *ch) ) { 206 | *ch = 0; 207 | break; 208 | } 209 | ch++; 210 | } 211 | 212 | if( inet_pton(AF_INET6, start, (ipptr->words)) == 0 ) { 213 | return IP_NO6YET; 214 | } 215 | /* now change the byte order from network to host native */ 216 | for( i=0; i<4; i++ ) { 217 | ipptr->words[i] = ntohl(ipptr->words[i]); 218 | } 219 | 220 | ipptr->space = IP_V6; 221 | 222 | #undef _IPV6_LENGTH 223 | } 224 | return IP_OK; 225 | } 226 | 227 | /**************************************************************************/ 228 | 229 | /*+ converts a "IP/length" string into a binary prefix 230 | 231 | 232 | 233 | +*/ 234 | 235 | er_ret_t 236 | IP_pref_t2b(ip_prefix_t *prefptr, char *prefstr, ip_exp_t expf) 237 | { 238 | char ip[256]; 239 | char *trash; 240 | char *slash; 241 | int len; 242 | er_ret_t err; 243 | 244 | if( expf != IP_PLAIN && expf != IP_EXPN ) { 245 | return IP_INVARG; 246 | } 247 | 248 | if( (slash=index(prefstr, '/')) == NULL ) { 249 | /* die; */ /* error: missing slash in prefix */ 250 | return IP_NOSLAS; 251 | } 252 | else { 253 | /* copy the IP part to another string, ERROR if 256 chars not enough */ 254 | 255 | len = slash - prefstr; 256 | if( len > 255 ) { 257 | /* die; */ /* ERROR - ip address part of the string too long. */ 258 | return IP_ADTOLO; 259 | } 260 | strncpy(ip, prefstr, len); 261 | ip[len]=0; 262 | 263 | if( (err=IP_addr_t2b( &(prefptr->ip), ip, expf)) != IP_OK) { 264 | /* die; */ /* set error flag: incorrect address format */ 265 | return err; 266 | } 267 | 268 | /* stop at first non-digit */ 269 | for(trash = slash+1; 270 | isdigit(* (unsigned char*) trash); /* cast for stupid gcc */ 271 | trash++) 272 | ; 273 | len = trash - (slash+1) ; 274 | if( len > 4 ) { 275 | /* die; */ /* ERROR - prefix length part of the string too long. */ 276 | return IP_PRTOLO; 277 | } 278 | strncpy(ip, slash+1, len); 279 | ip[len]=0; 280 | 281 | if( ut_dec_2_uns(ip, &prefptr->bits) < 0 282 | || prefptr->bits > IP_sizebits(prefptr->ip.space)) 283 | { 284 | /* if( sscanf (slash+1, "%d", &(prefptr->bits)) < 1 ) { 285 | die; */ /* handle syntax ERROR invalid characters found */ 286 | return IP_INVPRF; 287 | } 288 | } 289 | /* sanitify the prefix - maybe some irrelevant bits are set */ 290 | /* never create broken binary prefixes. */ 291 | 292 | IP_pref_bit_fix(prefptr); 293 | 294 | return IP_OK; 295 | } 296 | 297 | /**************************************************************************/ 298 | 299 | /*+ converts an inaddr/ip6int string into a binary prefix. 300 | 301 | RFC2317 support for IPv4: 302 | 303 | For expf==IP_EXPN (e2b macro) the unparsable part will be silently accepted 304 | (with the result being the prefix of the succesfully parsed bits). 305 | 306 | For expf==IP_PLAIN the unparsable part will make the function return an error. 307 | 308 | For IPv6 the expf doesn't matter, the address must be parsable in whole. 309 | 310 | +*/ 311 | er_ret_t 312 | IP_revd_t2b(ip_prefix_t *prefptr, char *domstr, ip_exp_t expf) 313 | { 314 | #define CPYLEN 264 315 | char ip[256], temp[256]; 316 | char prefstr[CPYLEN+1]; 317 | char *arpa; 318 | char *ch; 319 | int len, octets=0, goon=1, quads = 0; 320 | char *dot; 321 | er_ret_t err = IP_OK; 322 | 323 | dieif( expf != IP_PLAIN && expf != IP_EXPN ); 324 | 325 | /* The input may not be in lowercase, but must be processed as well. 326 | The simplest solution: make a copy and change it to lowercase. */ 327 | 328 | strncpy( prefstr, domstr, CPYLEN ); 329 | prefstr[CPYLEN] = '\0'; 330 | 331 | for(ch = prefstr; *ch != '\0'; ch++) { 332 | *ch = tolower(*ch); 333 | } 334 | 335 | if( (arpa=strstr(prefstr, ".in-addr.arpa")) != NULL ) { 336 | prefptr->ip.space = IP_V4; 337 | } 338 | else if( (arpa=strstr(prefstr, ".ip6.int")) != NULL ) { 339 | prefptr->ip.space = IP_V6; 340 | } 341 | else { 342 | return IP_NOREVD; 343 | } 344 | 345 | /* copy the IP part to another string, ERROR if 256 chars not enough */ 346 | len = arpa - prefstr; 347 | if( len > 255 ) { 348 | /* die; */ /* ERROR - ip address part of the string too long. */ 349 | return IP_ADTOLO; 350 | } 351 | strncpy(temp, prefstr, len); 352 | temp[len]=0; 353 | 354 | /* now: get the octets/quads reversed one by one. Then conversion. */ 355 | ip[0]=0; /* init */ 356 | switch( prefptr->ip.space ) { 357 | case IP_V6: 358 | /* ipv6 is like that: 0.8.0.6.0.1.0.0.2.ip6.int */ 359 | do { 360 | if( (dot = strrchr( temp, '.' )) == NULL ) { 361 | goon = 0; 362 | dot = temp; 363 | } 364 | strcat(ip, dot + ( goon ) ); 365 | quads++; 366 | 367 | /* after every 4 quads add a colon, unless that was the last quad */ 368 | 369 | if( goon && quads%4==0) { 370 | strcat(ip, ":"); 371 | } 372 | /* after the last quad add two colons - unless 373 | all 32 quads are defined */ 374 | if( !goon && quads<32 ) { 375 | strcat(ip, "::"); 376 | } 377 | 378 | *dot = 0; 379 | } while( goon ); 380 | /* convert */ 381 | err=IP_addr_t2b( &(prefptr->ip), ip, IP_EXPN); 382 | prefptr->bits = quads * 4; 383 | break; 384 | 385 | case IP_V4: 386 | do { 387 | if( (dot = strrchr( temp, '.' )) == NULL ) { 388 | goon = 0; 389 | dot = temp; 390 | } 391 | 392 | strcat(ip, dot + ( goon ) ); 393 | octets++; 394 | 395 | /* add a dot, unless that was the last octet */ 396 | if( goon ) { 397 | strcat(ip, "."); 398 | } 399 | 400 | *dot = 0; 401 | 402 | } while( goon ); 403 | 404 | /* now try to convert the ip. 405 | 406 | Support for RFC2317: 407 | If expf==IP_EXPN, then on failure leave out the last octet 408 | (nibble/piece) and try again. On success, quit the loop. 409 | 410 | In any case use the EXPN mode for the conversion. 411 | */ 412 | do { 413 | char *lastdot; 414 | 415 | if( (err=IP_addr_t2b( &(prefptr->ip), ip, IP_EXPN)) == IP_OK) { 416 | break; 417 | } 418 | 419 | /* cut the last octet */ 420 | if( (lastdot=strrchr(ip, '.')) == NULL ) { 421 | break; 422 | } 423 | *lastdot = '\0'; 424 | octets--; 425 | 426 | } while( expf == IP_EXPN && octets>0 ); 427 | 428 | prefptr->bits = octets * 8; 429 | break; 430 | } /* switch */ 431 | 432 | return err; 433 | } 434 | 435 | /**************************************************************************/ 436 | 437 | /*+ convert a range string into a binary range struct. 438 | +*/ 439 | er_ret_t 440 | IP_rang_t2b(ip_range_t *rangptr, char *rangstr, ip_exp_t expf) 441 | { 442 | char *ips, *dash; 443 | er_ret_t err; 444 | 445 | if( expf != IP_PLAIN && expf != IP_EXPN ) { 446 | return IP_INVARG; 447 | } 448 | 449 | if( (dash=index(rangstr, '-')) == NULL ) { 450 | /* die; */ /* error: missing dash in range */ 451 | return IP_INVRAN; 452 | } 453 | else { 454 | /* copy the first IP */ 455 | if( (err = wr_calloc( (void*) &ips,1,dash - rangstr + 1)) != UT_OK ) { 456 | return err; 457 | } 458 | 459 | strncpy(ips, rangstr, dash - rangstr); 460 | 461 | /* convert the first IP into a binary struct */ 462 | err=IP_addr_t2b( &(rangptr->begin), ips, expf); 463 | 464 | /* check later */ /* set error flag: incorrect address format */ 465 | 466 | wr_free(ips); 467 | 468 | if( err != IP_OK ) { 469 | return err; 470 | } 471 | 472 | /* now find the other ip, skip the space */ 473 | ips=dash+1; 474 | while( *ips == ' ' ) { 475 | ips++; 476 | } 477 | 478 | /* convert the second IP into a binary struct */ 479 | if( (err=IP_addr_t2b( &(rangptr->end), ips, expf)) != IP_OK ) { 480 | /* die; */ /* incorrect address format */ 481 | return err; 482 | } 483 | 484 | 485 | 486 | return ip_rang_validate(rangptr); 487 | } 488 | } 489 | 490 | 491 | /**************************************************************************/ 492 | /* accessor functions */ 493 | 494 | /******** address **********/ 495 | 496 | unsigned IP_addr_b2_space(ip_addr_t *addrptr) 497 | { 498 | return addrptr->space; 499 | } 500 | 501 | unsigned IP_addr_b2v4_addr(ip_addr_t *addrptr) 502 | { 503 | dieif( addrptr->space != IP_V4 ); 504 | return addrptr->words[0]; 505 | } 506 | /* ipv4 */ 507 | 508 | ip_v6word_t IP_addr_b2v6_hi(ip_addr_t *addrptr) 509 | { 510 | dieif( addrptr->space != IP_V6 ); 511 | return ( (((ip_v6word_t) addrptr->words[0]) << 32) 512 | + (((ip_v6word_t) addrptr->words[1]) )); 513 | } 514 | 515 | ip_v6word_t IP_addr_b2v6_lo(ip_addr_t *addrptr) 516 | { 517 | dieif( addrptr->space != IP_V6 ); 518 | return ( (((ip_v6word_t) addrptr->words[2]) << 32) 519 | + (((ip_v6word_t) addrptr->words[3]) )); 520 | } 521 | 522 | /******** prefix **********/ 523 | 524 | unsigned IP_pref_b2_space(ip_prefix_t *prefix) { 525 | return IP_addr_b2_space( &(prefix->ip) ); 526 | } 527 | 528 | unsigned IP_pref_b2_len(ip_prefix_t *prefix) { 529 | return prefix->bits; 530 | } 531 | 532 | unsigned IP_pref_b2v4_addr(ip_prefix_t *prefix) { 533 | return IP_addr_b2v4_addr( &(prefix->ip) ); 534 | } 535 | 536 | /* range */ 537 | 538 | unsigned IP_rang_b2_space(ip_range_t *myrang) { 539 | /* hardwire to IPV4 for now */ 540 | return IP_V4; 541 | } 542 | 543 | /* 544 | * complex conversions (return void, set values through pointers * 545 | */ 546 | void IP_addr_b2v4(ip_addr_t *addrptr, unsigned *address) { 547 | *address = IP_addr_b2v4_addr(addrptr); 548 | } 549 | 550 | void IP_pref_b2v4(ip_prefix_t *prefptr, 551 | unsigned int *prefix, 552 | unsigned int *prefix_length) 553 | { 554 | *prefix = IP_addr_b2v4_addr( &(prefptr->ip)); 555 | *prefix_length = IP_pref_b2v4_len(prefptr); 556 | } 557 | 558 | 559 | 560 | void IP_pref_b2v6(ip_prefix_t *prefptr, 561 | ip_v6word_t *high, 562 | ip_v6word_t *low, 563 | unsigned int *prefix_length) 564 | { 565 | *high = IP_addr_b2v6_hi( &(prefptr->ip)); 566 | *low = IP_addr_b2v6_lo( &(prefptr->ip)); 567 | *prefix_length = IP_pref_b2v6_len(prefptr); 568 | } 569 | 570 | 571 | void IP_rang_b2v4(ip_range_t *myrang, 572 | unsigned *begin, 573 | unsigned *end) 574 | { 575 | *begin = IP_addr_b2v4_addr( &(myrang->begin)); 576 | *end = IP_addr_b2v4_addr( &(myrang->end)); 577 | } 578 | 579 | 580 | 581 | /******** construct from raw values **********/ 582 | 583 | /******** address **********/ 584 | er_ret_t IP_addr_v4_mk(ip_addr_t *addrptr, 585 | unsigned addrval) { 586 | addrptr->space = IP_V4; 587 | addrptr->words[0] = addrval; 588 | addrptr->words[1] = addrptr->words[2] = addrptr->words[3] = 0; 589 | 590 | /* no real possibility of checking the syntax */ 591 | return IP_OK; 592 | } 593 | 594 | er_ret_t IP_addr_v6_mk(ip_addr_t *addrptr, 595 | ip_v6word_t high, 596 | ip_v6word_t low) { 597 | 598 | ip_v6word_t ff = 0xffffffff; 599 | 600 | addrptr->space = IP_V6; 601 | (addrptr->words[0]) = (high >> 32) & ff; 602 | (addrptr->words[1]) = high & ff ; 603 | (addrptr->words[2]) = (low >> 32) & ff; 604 | (addrptr->words[3]) = low & ff; 605 | 606 | /* no real possibility of checking the syntax */ 607 | return IP_OK; 608 | } 609 | 610 | /******** prefix **********/ 611 | er_ret_t IP_pref_v4_mk(ip_prefix_t *prefix, 612 | unsigned prefval, 613 | unsigned preflen) 614 | { 615 | if( preflen > 32 ) { 616 | die; 617 | } 618 | IP_addr_v4_mk(&(prefix->ip), prefval); 619 | prefix->bits = preflen; 620 | 621 | IP_pref_bit_fix( prefix ); /* never produce inconsistent prefixes */ 622 | 623 | return IP_OK; 624 | } 625 | 626 | /******** range **********/ 627 | er_ret_t IP_rang_v4_mk(ip_range_t *rangptr, 628 | unsigned addrbegin, 629 | unsigned addrend) 630 | { 631 | er_ret_t err; 632 | 633 | if( (err=IP_addr_v4_mk( &(rangptr->begin), addrbegin)) == IP_OK ) { 634 | err=IP_addr_v4_mk( &(rangptr->end), addrend); 635 | } 636 | return err; 637 | } 638 | 639 | /**************************************************************************/ 640 | 641 | 642 | /**************************************************************************/ 643 | /*+ a2v4 == functions to convert the ascii representation into binary, 644 | * and then set the unsigned values at the pointers provided. 645 | * 646 | +*/ 647 | 648 | /* Convert route string into numbers */ 649 | /* ipv4 */ 650 | er_ret_t 651 | IP_pref_a2v4(char *avalue, ip_prefix_t *pref, 652 | unsigned *prefix, unsigned *prefix_length) 653 | { 654 | 655 | er_ret_t ret; 656 | 657 | if((ret = IP_pref_e2b(pref, avalue)) == IP_OK) { 658 | IP_pref_b2v4(pref, prefix, prefix_length); 659 | } 660 | return(ret); 661 | } 662 | 663 | /* ipv6 */ 664 | er_ret_t 665 | IP_pref_a2v6(char *avalue, ip_prefix_t *pref, 666 | ip_v6word_t *high, ip_v6word_t *low, 667 | unsigned *prefix_length) 668 | { 669 | er_ret_t ret; 670 | 671 | if((ret = IP_pref_e2b(pref, avalue)) == IP_OK) { 672 | IP_pref_b2v6(pref, high, low, prefix_length); 673 | } 674 | return(ret); 675 | } 676 | 677 | /* Convert reverse domain string into numbers */ 678 | er_ret_t 679 | IP_revd_a2v4(char *avalue, ip_prefix_t *pref, 680 | unsigned int *prefix, unsigned int *prefix_length) 681 | { 682 | er_ret_t ret; 683 | 684 | if((ret = IP_revd_e2b(pref, avalue)) == IP_OK) { 685 | IP_pref_b2v4(pref, prefix, prefix_length); 686 | } 687 | return(ret); 688 | } 689 | 690 | /* Convert ip addr string into numbers */ 691 | er_ret_t 692 | IP_addr_a2v4(char *avalue,ip_addr_t *ipaddr, unsigned int *address) 693 | { 694 | er_ret_t ret; 695 | 696 | if((ret = IP_addr_e2b(ipaddr, avalue)) == IP_OK) { 697 | IP_addr_b2v4(ipaddr, address); 698 | } 699 | return(ret); 700 | } 701 | 702 | /* Convert inetnum attribute into numbers */ 703 | er_ret_t 704 | IP_rang_a2v4(char *rangstr, ip_range_t *myrang, 705 | unsigned int *begin_in, unsigned int *end_in) 706 | { 707 | er_ret_t ret; 708 | 709 | if( (ret=IP_rang_e2b(myrang, rangstr)) == IP_OK ) { 710 | #if 0 /* no IPv4 classful ranges anymore */ 711 | if( IP_addr_e2b( &(myrang->begin), rangstr ) == IP_OK ) 712 | if ((ret=IP_rang_classful( myrang , &(myrang->begin))) == IP_OK ) 713 | ; 714 | #endif 715 | IP_rang_b2v4(myrang, begin_in, end_in); 716 | } 717 | 718 | return (ret); 719 | } 720 | 721 | 722 | /* ********************************************************************* 723 | f2b - free numbers represented in ascii into a binary struct 724 | ********************************************************************* */ 725 | 726 | er_ret_t 727 | IP_addr_f2b_v4(ip_addr_t *addrptr, char *adrstr) 728 | { 729 | unsigned address; 730 | 731 | if( ut_dec_2_uns(adrstr, &address) < 0 ) { 732 | return IP_INVARG; 733 | } 734 | 735 | return IP_addr_v4_mk(addrptr, address); 736 | } 737 | 738 | er_ret_t 739 | IP_rang_f2b_v4(ip_range_t *rangptr, char *beginstr, char *endstr) 740 | { 741 | if( IP_addr_f2b_v4( &(rangptr->begin), beginstr) != IP_OK 742 | || IP_addr_f2b_v4( &(rangptr->end), endstr) != IP_OK) { 743 | return IP_INVARG; 744 | } 745 | else { 746 | return IP_OK; 747 | } 748 | } 749 | 750 | er_ret_t 751 | IP_pref_f2b_v4(ip_prefix_t *prefptr, char *prefixstr, char *lengthstr) 752 | { 753 | if( IP_addr_f2b_v4( &(prefptr->ip), prefixstr) != IP_OK 754 | || ut_dec_2_uns(lengthstr, &(prefptr->bits) ) < 0 755 | || prefptr->bits > IP_sizebits(prefptr->ip.space)) { 756 | return IP_INVARG; 757 | } 758 | IP_pref_bit_fix(prefptr); /* never create broken binary prefixes. */ 759 | return IP_OK; 760 | } 761 | 762 | 763 | er_ret_t 764 | IP_addr_f2b_v6(ip_addr_t *addrptr, char *msbstr, char *lsbstr ) 765 | { 766 | ip_v6word_t high, low; 767 | 768 | if( sscanf(msbstr, "%llu", &high) < 1 || 769 | sscanf(lsbstr, "%llu", &low) < 1 ) { 770 | return IP_INVARG; 771 | } 772 | 773 | return IP_addr_v6_mk(addrptr, high, low); 774 | } 775 | 776 | 777 | er_ret_t 778 | IP_pref_f2b_v6(ip_prefix_t *prefptr, char *msbstr, char *lsbstr, char *lengthstr) 779 | { 780 | if( IP_addr_f2b_v6( &(prefptr->ip), msbstr, lsbstr ) != IP_OK 781 | || ut_dec_2_uns(lengthstr, &(prefptr->bits) ) < 0 782 | || prefptr->bits > IP_sizebits(prefptr->ip.space)) { 783 | return IP_INVARG; 784 | } 785 | IP_pref_bit_fix(prefptr); /* never create broken binary prefixes. */ 786 | return IP_OK; 787 | } 788 | 789 | 790 | /**************************************************************************/ 791 | /*+ convert the socket's idea of address into a binary range struct. 792 | 793 | space select the address type (and consequently struct type) 794 | */ 795 | 796 | er_ret_t 797 | IP_addr_s2b(ip_addr_t *addrptr, 798 | void *addr_in, 799 | int addr_len) 800 | { 801 | if( addr_len == sizeof(struct sockaddr_in) 802 | && ((struct sockaddr_in *)addr_in)->sin_family == AF_INET ) { 803 | addrptr->space = IP_V4; 804 | addrptr->words[0] = 805 | ntohl( ((struct sockaddr_in*)addr_in)->sin_addr.s_addr); 806 | 807 | /* set remaining limbs to zero */ 808 | addrptr->words[1] = addrptr->words[2] = addrptr->words[3] = 0; 809 | 810 | } 811 | else { /* unsupported family or invalid struct */ 812 | die; 813 | } 814 | return IP_OK; 815 | } 816 | 817 | /**************************************************************************/ 818 | /*+converts the IP binary address (binaddr) to a string (ascaddr) 819 | of at most strmax characters. Independent of the result 820 | (success or failure) it messes up the string. 821 | +*/ 822 | er_ret_t 823 | IP_addr_b2a( ip_addr_t *binaddr, char *ascaddr, int strmax ) 824 | { 825 | 826 | if(binaddr->space == IP_V4) { 827 | if (snprintf(ascaddr, strmax, "%d.%d.%d.%d", 828 | ((binaddr->words[0]) & ((unsigned)0xff<<24))>>24, 829 | ((binaddr->words[0]) & (0xff<<16))>>16, 830 | ((binaddr->words[0]) & (0xff<<8))>>8, 831 | ((binaddr->words[0]) & (0xff<<0))>>0 832 | ) >= strmax) { 833 | /*die; */ /* string too short */ 834 | return IP_TOSHRT; 835 | } 836 | } 837 | else { 838 | /* IPv6 */ 839 | unsigned tmpv6[4]; 840 | int i; 841 | 842 | /* inet_* operates on network byte format numbers, so we need 843 | to prepare a tmp. data with it */ 844 | 845 | for(i=0; i<4; i++) { 846 | tmpv6[i] = htonl(binaddr->words[i]); 847 | } 848 | 849 | if( inet_ntop(AF_INET6, tmpv6, ascaddr, strmax) 850 | == NULL ) { 851 | return IP_TOSHRT; 852 | } 853 | } 854 | return IP_OK; 855 | } 856 | 857 | /**************************************************************************/ 858 | 859 | /*+ convert a binary prefix back into ascii string at most strmax chars long 860 | +*/ 861 | er_ret_t 862 | IP_pref_b2a(ip_prefix_t *prefptr, char *ascaddr, int strmax) 863 | { 864 | int strl; 865 | er_ret_t err; 866 | 867 | if( (err=IP_addr_b2a (&(prefptr->ip), ascaddr, strmax)) != IP_OK) { 868 | /*die; */ /* what the hell */ 869 | return err; 870 | } 871 | strl = strlen(ascaddr); 872 | strmax -= strl; 873 | 874 | /* now strmax holds the space that is left */ 875 | 876 | if( snprintf(ascaddr+strl, strmax, "/%d", prefptr->bits) >= strmax) { 877 | /* die; */ /* error: string too short */ 878 | return IP_TOSHRT; 879 | } 880 | return IP_OK; 881 | } 882 | 883 | 884 | 885 | /**************************************************************************/ 886 | /*+ convert a binary range back into ascii string at most strmax chars long 887 | +*/ 888 | er_ret_t 889 | IP_rang_b2a(ip_range_t *rangptr, char *ascaddr, int strmax) 890 | { 891 | int strl=0, strleft; 892 | er_ret_t err; 893 | 894 | strleft = strmax - strl; 895 | if( (err=IP_addr_b2a (&(rangptr->begin), ascaddr, strleft)) != IP_OK) { 896 | return err; 897 | } 898 | strl = strlen(ascaddr); 899 | 900 | strleft = strmax - strl; 901 | if( strleft < 5 ) { 902 | return IP_TOSHRT; 903 | } 904 | strcat( ascaddr, " - " ); 905 | strl += 3; 906 | 907 | strleft = strmax - strl; 908 | if( (err=IP_addr_b2a (&(rangptr->end), ascaddr+strl, strleft)) != IP_OK) { 909 | return err; 910 | } 911 | 912 | return IP_OK; 913 | } 914 | 915 | /**************************************************************************/ 916 | /*+ return the bitnum bit of the address, 917 | COUNTING FROM THE TOP !!!!! , 918 | starting with 0 for the *most significant bit*. 919 | +*/ 920 | int 921 | IP_addr_bit_get(ip_addr_t *binaddr, int bitnum) { 922 | int bitval; 923 | int w,c; 924 | 925 | /* avoid unnecessary division */ 926 | if( binaddr->space == IP_V4 ) { 927 | w = 0; 928 | c = bitnum; 929 | } 930 | else { 931 | w = bitnum / 32; 932 | c = bitnum % 32; 933 | } 934 | 935 | bitval = (binaddr->words[w] & (0x80000000 >> (c))); 936 | 937 | return (bitval != 0); 938 | 939 | } 940 | 941 | /**************************************************************************/ 942 | /*+ set the bitnum bit of the address to bitval, 943 | COUNTING FROM THE TOP !!!!! , 944 | starting with 0 for the *most significant bit*. 945 | +*/ 946 | void 947 | IP_addr_bit_set(ip_addr_t *binaddr, int bitnum, int bitval) { 948 | int w,c; 949 | 950 | /* avoid unnecessary division */ 951 | if( binaddr->space == IP_V4 ) { 952 | w = 0; 953 | c = bitnum; 954 | } 955 | else { 956 | w = bitnum / 32; 957 | c = bitnum % 32; 958 | } 959 | 960 | if ( bitval == 1 ) 961 | 962 | binaddr->words[w] |= (0x80000000 >> (c)); 963 | else 964 | binaddr->words[w] &= ~(0x80000000 >> (c)); 965 | } 966 | /**************************************************************************/ 967 | 968 | /*+ this fixes a prefix by setting insignificant bits to 0 +*/ 969 | void 970 | IP_pref_bit_fix( ip_prefix_t *prefix ) 971 | { 972 | 973 | if( prefix->ip.space == IP_V4 ) { 974 | ip_limb_t mask = 0xffffffff; 975 | 976 | /* shorthand for ipv4 */ 977 | 978 | /* Shifting out by 32 bits does NOT turn all bits into 0... */ 979 | if( prefix->bits < 32 ) { 980 | prefix->ip.words[0] &= ~(mask >> prefix->bits); 981 | } 982 | } 983 | else { 984 | int i; 985 | for(i=prefix->bits; i < IP_sizebits(prefix->ip.space) ; i++) { 986 | IP_addr_bit_set( & prefix->ip, i, 0); 987 | } 988 | } 989 | } 990 | 991 | 992 | /**************************************************************************/ 993 | 994 | /*+ compares two IP addresses up to the bit # len, 995 | returns 0 if equal, 1 if ptra greater, -1 if ptrb greater. 996 | 997 | It is the responsility of the caller to ensure that both addresses 998 | are from the same IP space. 999 | 1000 | This is pretty slow; it is used in the searches of the radix tree, 1001 | so it might be good to optimise this. 1002 | +*/ 1003 | 1004 | int 1005 | IP_addr_cmp(ip_addr_t *ptra, ip_addr_t *ptrb, int len) 1006 | { 1007 | int a,b,i; 1008 | 1009 | for(i=0; i<len; i++) { 1010 | a=IP_addr_bit_get(ptra, i); 1011 | b=IP_addr_bit_get(ptrb, i); 1012 | if( a != b ) { 1013 | if( a > b ) return 1; 1014 | else return -1; 1015 | } 1016 | } 1017 | return 0; 1018 | } 1019 | 1020 | 1021 | /*+ checks if an IP address is contained within the prefix 1022 | returns 1 if it is, 0 otherwise 1023 | 1024 | It is the responsility of the caller to ensure that both address 1025 | and prefix are from the same IP space. 1026 | +*/ 1027 | int 1028 | IP_addr_in_pref(ip_addr_t *ptra, ip_prefix_t *prefix) 1029 | { 1030 | return (IP_addr_cmp( ptra, & prefix->ip, prefix->bits) == 0); 1031 | } 1032 | 1033 | /*+ checks if an IP address is contained within the range 1034 | returns 1 if it is, 0 otherwise 1035 | 1036 | It is the responsility of the caller to ensure that both address 1037 | and range are from the same IP space. 1038 | 1039 | works only for IPv4 1040 | +*/ 1041 | 1042 | int IP_addr_in_rang(ip_addr_t *ptra, ip_range_t *rangptr) 1043 | { 1044 | /* if( rangptr->end.space == IP_V4 ) { 1045 | return ( rangptr->begin.words[0] <= ptra->words[0] 1046 | && rangptr->end.words[0] >= ptra->words[0] ); 1047 | } 1048 | else { 1049 | */ 1050 | return( IP_addr_cmp(ptra, &rangptr->begin, 1051 | IP_sizebits(rangptr->end.space)) >= 0 /* adr >= begin */ 1052 | && IP_addr_cmp(ptra, &rangptr->end, 1053 | IP_sizebits(rangptr->end.space)) <= 0 /* adr <= end */ 1054 | ); 1055 | /* }*/ 1056 | } 1057 | 1058 | /**************************************************************************/ 1059 | 1060 | /*+ calculate the span of a range == size - 1 +*/ 1061 | 1062 | ip_rangesize_t 1063 | IP_rang_span( ip_range_t *rangptr ) 1064 | { 1065 | /* IPv4: */ 1066 | dieif( rangptr->end.space != IP_V4 ); 1067 | 1068 | return rangptr->end.words[0] - rangptr->begin.words[0]; 1069 | } 1070 | 1071 | 1072 | /**************************************************************************/ 1073 | 1074 | /*+ 1075 | this is a shorthand notation to pull out the first word of the address. 1076 | it is defined for the scope od the following functions 1077 | +*/ 1078 | #define ad(which) (rangptr->which) 1079 | 1080 | /**************************************************************************/ 1081 | /*+ Decomposes a binary range into prefixes and appends them to the list. 1082 | Allocates prefix structures and list elements, they must be freed 1083 | after use. 1084 | 1085 | returns a bitmask of prefix lengths used. 1086 | +*/ 1087 | unsigned 1088 | IP_rang_decomp(ip_range_t *rangptr, GList **preflist) 1089 | { 1090 | unsigned prefmask=0; 1091 | register int slash=0; 1092 | register unsigned c_dif, blk, ff; 1093 | ip_range_t workrange; 1094 | ip_addr_t workbegin; 1095 | ip_addr_t workend; 1096 | ip_prefix_t *prefptr; 1097 | 1098 | dieif( rangptr->begin.space != IP_V4 ); 1099 | 1100 | if( ad(begin).words[0] > ad(end).words[0] ) { /* has gone too far */ 1101 | return 0; 1102 | } 1103 | 1104 | if( ad(begin).words[0] == ad(end).words[0] ) { /* an IP == a /32 (IPv4) */ 1105 | prefmask |= 1; 1106 | if( wr_calloc( (void **)& prefptr, sizeof(ip_prefix_t), 1) != UT_OK) { 1107 | die; 1108 | } 1109 | prefptr->ip = ad(begin); 1110 | prefptr->bits = 32; 1111 | 1112 | *preflist = g_list_append( *preflist, prefptr ); 1113 | 1114 | return prefmask; 1115 | } 1116 | 1117 | c_dif = ad(end).words[0] - ad(begin).words[0]; 1118 | 1119 | /* initialize work vars */ 1120 | 1121 | workbegin = ad(begin); 1122 | workend = ad(end); 1123 | 1124 | /* now find the biggest block fitting in this range */ 1125 | /* i.e. the first 2^n number smaller than c_dif */ 1126 | 1127 | /* the loop would not work for /0 (some stupid queries may have that) */ 1128 | /* so this must be checked for separately */ 1129 | 1130 | if( c_dif == 0xffffffff ) { 1131 | /* they are already set to 0.0.0.0 - 255.255.255.255 */ 1132 | /* leave them alone. */ 1133 | blk = 0; 1134 | slash = 0; 1135 | } 1136 | else { 1137 | 1138 | c_dif += 1; /* was not done earlier to protect from overflow */ 1139 | 1140 | for(slash=1; 1141 | slash<32 && ((blk=((unsigned)0x80000000>>(slash-1))) & c_dif) == 0; 1142 | slash++) {} 1143 | 1144 | /* clear all digits in a and b under the blk one. */ 1145 | ff=blk-1; 1146 | 1147 | workbegin.words[0] = (workbegin.words[0] + ff) & ~ff; 1148 | 1149 | workend.words[0] = (workend.words[0] + 1) & ~ff; 1150 | } 1151 | 1152 | if( workbegin.words[0] != workend.words[0] ) { 1153 | prefmask |= blk; 1154 | if( wr_malloc( (void **)& prefptr, sizeof(ip_prefix_t)) != UT_OK) { 1155 | die; 1156 | } 1157 | prefptr->ip = workbegin; 1158 | prefptr->bits = slash; 1159 | 1160 | *preflist = g_list_append( *preflist, prefptr ); 1161 | } 1162 | 1163 | if( ad(begin).words[0] != workbegin.words[0] ) { 1164 | workrange.begin = ad(begin); 1165 | 1166 | workbegin.words[0] -= 1; 1167 | workrange.end = workbegin; 1168 | 1169 | prefmask |= IP_rang_decomp( &workrange, preflist ); 1170 | } 1171 | 1172 | /* here we must protect from decomposition of 1173 | * 255.255.255.255 - 255.255.255.255 in case the range 1174 | * 0.0.0.0 - 255.255.255.255 is considered. Hence the slash>0 condition. 1175 | */ 1176 | 1177 | if( workend.words[0] <= ad(end).words[0] && slash > 0) { 1178 | workrange.begin = workend; 1179 | workrange.end = ad(end); 1180 | 1181 | prefmask |= IP_rang_decomp( &workrange, preflist ); 1182 | } 1183 | 1184 | return prefmask; 1185 | 1186 | } 1187 | 1188 | 1189 | /***************************************************************************/ 1190 | 1191 | /*+ Similar name, slightly different code, totally different functionality. 1192 | 1193 | finds the smallest canonical block encompassing the whole given range, 1194 | then MODIFIES the range pointed to by the argument 1195 | so that it's equal to this block. 1196 | 1197 | +*/ 1198 | 1199 | void IP_rang_encomp(ip_range_t *rangptr) 1200 | { 1201 | int slash=0; 1202 | unsigned c_dif, blk, ff, t_dif; 1203 | ip_addr_t workbegin; 1204 | ip_addr_t workend; 1205 | 1206 | dieif( rangptr->begin.space != IP_V4 ); 1207 | 1208 | c_dif = ad(end).words[0] - ad(begin).words[0]; 1209 | 1210 | /* now find the biggest block fitting in this range */ 1211 | /* i.e. the first 2^n number smaller than c_dif */ 1212 | 1213 | /* the loop would not work for /0 (some stupid queries may have that) */ 1214 | /* so this must be checked for separately */ 1215 | 1216 | if( c_dif > 0x80000000 ) { 1217 | slash = 0; 1218 | ff = 0xffffffff; 1219 | blk = 0; 1220 | 1221 | workbegin = workend = ad(begin); 1222 | workbegin.words[0] = 0; 1223 | workend.words[0] = ff; 1224 | } 1225 | else { 1226 | 1227 | do { 1228 | c_dif += 1; 1229 | 1230 | /* find the smallest block ENCOMPASSING c_dif. */ 1231 | /* this implies a loop from the bottom up */ 1232 | 1233 | for(slash=32; 1234 | slash>1 && (blk=((unsigned)0x80000000>>(slash-1))) < c_dif; 1235 | slash--) {} 1236 | 1237 | ff=blk-1; 1238 | 1239 | /* clear all digits in workbegin under the blk one. */ 1240 | 1241 | workbegin = ad(begin); 1242 | workbegin.words[0] = workbegin.words[0] & ~ff; 1243 | 1244 | /* see if it has not made the difference larger than blk, */ 1245 | /* retry if so */ 1246 | 1247 | t_dif = c_dif; 1248 | c_dif = ad(end).words[0] - workbegin.words[0]; 1249 | 1250 | } while( c_dif >= t_dif ); 1251 | 1252 | /* set the endpoint to workbegin + blocksize - 1 */ 1253 | /* which amounts to + ff */ 1254 | 1255 | workend = ad(begin); 1256 | workend.words[0] = workbegin.words[0] + ff; 1257 | } 1258 | 1259 | 1260 | /* set the range to new values */ 1261 | 1262 | rangptr->begin = workbegin; 1263 | rangptr->end = workend; 1264 | } 1265 | 1266 | /***************************************************************************/ 1267 | /*+ sets a range equal to a prefix +*/ 1268 | 1269 | er_ret_t 1270 | IP_pref_2_rang( ip_range_t *rangptr, ip_prefix_t *prefptr ) 1271 | { 1272 | int shift; 1273 | int i; 1274 | 1275 | ad(begin) = ad(end) = prefptr->ip; 1276 | 1277 | /* IPv6 is a bit more complicated, as four words are involved */ 1278 | 1279 | /* additional problem: shifting right by >=32 is equal to shifting by 0, 1280 | so it does not change any bits */ 1281 | /* solution: don't touch those words */ 1282 | 1283 | for(i=0; i<4; i++) { 1284 | 1285 | if( prefptr->bits < 32*(1+i) ) { 1286 | shift = prefptr->bits < 32 + (i-1) * 32 1287 | ? 0 : (prefptr->bits % 32) ; 1288 | ad(end).words[i] |= (0xffffffffU >> shift); 1289 | } 1290 | 1291 | if( prefptr->ip.space == IP_V4) { 1292 | break; /* do only first word for IPv4 */ 1293 | } 1294 | } 1295 | return IP_OK; 1296 | } 1297 | 1298 | #undef ad 1299 | 1300 | /***************************************************************************/ 1301 | 1302 | /*+ 1303 | This is to parse a classfull address into a range. 1304 | 1305 | Takes the address by pointer from addrptr and puts the result 1306 | at rangptr. 1307 | 1308 | Throws error if the address does not fall into any of the 1309 | classfull categories 1310 | 1311 | +*/ 1312 | 1313 | er_ret_t 1314 | IP_rang_classful( ip_range_t *rangptr, ip_addr_t *addrptr) 1315 | { 1316 | int i; 1317 | unsigned b[4]; 1318 | 1319 | if( addrptr->space != IP_V4 ) { 1320 | /* it's IPv6. There are no classful ranges or anything like that. */ 1321 | die; 1322 | } 1323 | 1324 | rangptr->begin = *addrptr; 1325 | rangptr->end.space = IP_V4; 1326 | 1327 | /* initisalise end to zero */ 1328 | for(i=0; i<IPLIMBNUM; i++) { 1329 | rangptr->end.words[i] = 0; 1330 | } 1331 | 1332 | /* assume it's at least a valid IP. let's try different classes now */ 1333 | 1334 | /* we could have used a union here, but it would not work on */ 1335 | /* low endians. So byte by byte copying to and from an array. */ 1336 | 1337 | for(i=0; i<4; i++) { 1338 | b[i] = ( rangptr->begin.words[0] & (0xFF << i*8) ) >> i*8; 1339 | } 1340 | 1341 | if( b[3] >= 1 && b[3] < 128 1342 | && b[2] == 0 && b[1] == 0 && b[0] == 0 ) { 1343 | b[2]=b[1]=b[0]=255; 1344 | } 1345 | else if( b[3] >= 128 && b[3] < 192 1346 | && b[1] == 0 && b[0] == 0 ) { 1347 | b[1]=b[0]=255; 1348 | } 1349 | else if( b[3] >= 192 && b[3] < 224 1350 | && b[0] == 0 ) { 1351 | b[0]=255; 1352 | } 1353 | else if( b[3] >= 224 && b[3] < 255 ) { 1354 | /* just leave it, make it a /32, i.e. begin == end */ 1355 | /* EMPTY */; 1356 | } 1357 | else { 1358 | /* Leave it and make it a /32 */ 1359 | /* This is AGAINST the rule! but we have some junk */ 1360 | /* so we have to compensate for it. */ 1361 | /* EMPTY */; 1362 | } 1363 | 1364 | /* copy the (now - modified) bytes into the end of range */ 1365 | for(i=0; i<4; i++) { 1366 | rangptr->end.words[0] |= (b[i] << i*8); 1367 | } 1368 | 1369 | return IP_OK; 1370 | } 1371 | 1372 | 1373 | /***************************************************************************/ 1374 | /*+ 1375 | Trying to be smart :-) and convert a query search term into prefix(es), 1376 | regardless of whether specified as IP address, prefix or range. 1377 | 1378 | justcheck - if just checking the syntax (justcheck == 1), 1379 | then the prefixes are freed before the function returns, 1380 | otherwise it is the responsibility of the caller to free the list. 1381 | 1382 | +*/ 1383 | 1384 | er_ret_t 1385 | IP_smart_conv(char *key, 1386 | int justcheck, 1387 | int encomp, 1388 | GList **preflist, 1389 | ip_exp_t expf, 1390 | ip_keytype_t *keytype 1391 | ) 1392 | { 1393 | int free_it; 1394 | er_ret_t call_err, err=IP_OK; /* let's be optimistic :-) */ 1395 | ip_prefix_t *querypref; 1396 | 1397 | /* if just checking the syntax (justcheck == 1), 1398 | then free_it = 1, 1399 | else 0, but may be modified later (in range conversion) 1400 | */ 1401 | 1402 | free_it = justcheck; 1403 | 1404 | if( (call_err = wr_malloc( (void **) &querypref, sizeof(ip_prefix_t))) 1405 | != UT_OK) { 1406 | return call_err; 1407 | } 1408 | 1409 | if( IP_pref_t2b(querypref, key, expf) == IP_OK ) { 1410 | *keytype = IPK_PREFIX; 1411 | 1412 | if( justcheck == 0) { 1413 | *preflist = g_list_append(*preflist, querypref); 1414 | } 1415 | } 1416 | else { 1417 | /* not a prefix. */ 1418 | /* Maybe an IP ? */ 1419 | if( IP_addr_t2b( &(querypref->ip), key, expf) == IP_OK ) { 1420 | 1421 | *keytype = IPK_IP; 1422 | 1423 | /*convert to a /32 or /128*/ 1424 | querypref->bits = IP_sizebits(querypref->ip.space); 1425 | 1426 | if( justcheck == 0) { 1427 | *preflist = g_list_append(*preflist, querypref); 1428 | } 1429 | } 1430 | else { 1431 | /* hm, maybe a range then ? */ 1432 | ip_range_t myrang; 1433 | 1434 | /* won't use the querypref anymore, mark it for freeing later */ 1435 | free_it = 1; 1436 | 1437 | if( IP_rang_t2b(&myrang, key, expf) == IP_OK ) { 1438 | /* Wow. Great. */ 1439 | 1440 | *keytype = IPK_RANGE; 1441 | 1442 | /* sometimes (exless match) we look for the first bigger(shorter) */ 1443 | /* prefix containing this range. */ 1444 | 1445 | if( encomp ) { 1446 | IP_rang_encomp(&myrang); 1447 | } 1448 | /* OK, now we can let the engine happily find that there's just one */ 1449 | /* prefix in range */ 1450 | 1451 | if( justcheck == 0) { 1452 | IP_rang_decomp(&myrang, preflist); 1453 | } 1454 | } 1455 | else { 1456 | *keytype = IPK_UNDEF; 1457 | err = IP_INVARG; /* "conversion error" */ 1458 | } 1459 | } 1460 | } 1461 | 1462 | if( free_it ) { 1463 | wr_free(querypref); 1464 | } 1465 | 1466 | return err; 1467 | } 1468 | 1469 | 1470 | /* convert whatever comes into a range */ 1471 | er_ret_t 1472 | IP_smart_range(char *key, 1473 | ip_range_t *rangptr, 1474 | ip_exp_t expf, 1475 | ip_keytype_t *keytype 1476 | ) 1477 | { 1478 | er_ret_t err=IP_OK; 1479 | GList *preflist = NULL; 1480 | 1481 | /* first : is it a range ? */ 1482 | 1483 | if( (err = IP_rang_t2b(rangptr, key, expf)) == IP_OK ) { 1484 | *keytype = IPK_RANGE; 1485 | } 1486 | else { 1487 | /* OK, this must be possible to convert it to prefix and from there 1488 | to a range. */ 1489 | if( (err = IP_smart_conv(key, 0, 0, &preflist, expf, keytype)) 1490 | == IP_OK ) { 1491 | 1492 | dieif( g_list_length(preflist) != 1 ); 1493 | 1494 | dieif(IP_pref_2_rang( rangptr, g_list_first(preflist)->data ) != IP_OK ); 1495 | } 1496 | } 1497 | 1498 | wr_clear_list( &preflist ); 1499 | 1500 | return err; 1501 | } 1502 |