
minim-pdf version 2025/1.6

author Esger Renkema
contact minim@elrenkema.nl

This package adds low-level support to plain luatex for marking up the structure
of a pdf document. The implementation is rather basic, but should allow you
to make your pdfs fully pdf/a-compliant. Load the package by saying \input
minim-pdf.

The creation of tagged pdf will be described in the second half of this manual;
all other features will be covered first.

Hyperlinks

Hyperlinks can be made with \hyperlink [alt {...}] [attr {...}] <ac-
tion> ... \endlink, where the <action> must be one of name {...} | url
{...} | name {...} | next | prev | first | last With the name action,
a named destination must be used (see below), while the user action will be
passed directly to the back-end (as with the pdftex primitive). After the url
action, the characters ~, # and % need not be escaped. (Of course, this does
nothing for already-tokenised text; be aware of this when you wrap \hyperlink
into another macro.) Any spaces after the <action> will be ignored.

The \hyperlinkstyle token list can be used so set common (pdf) link attributes;
it defaults to /Border [0 0 0]. The contents of the optional attr parameter
will be appended to these. The alt options sets the /Contents key that is
required by PDF/UA (where it has the purpose of an alt text).

A named destination can be created with \nameddestination {...} (also in
horizontal mode, unlike the backend primitive) and if you cannot think of a
name, \newdestinationname should generate a unique one. If you need the
latter twice, \lastdestinationname gives the last generated name.

Bookmarks

Bookmarks (also known as outlines) can be added with \outline [level n]
[open|closed] [dest {name}] {title}. Add open or closed to have the
bookmark appear initially open or closed (the default), and say dest {name}
for having it refer to a specific named destination (otherwise, a new one will be
created where the \outline command appears).

In the absence of the level option, the bookmark is automatically associated
with the current structure element and the hierarchy of structure elements
determines the nesting of bookmarks. This works even if you have otherwise
disabled tagging and is the recommended way of generating outlines. (You
can find all relevant macros in next chapter under ‘Document structure’ and
‘Structure element aliases’.)

As a fallback, outlines specified with the level n option will be inserted at
the end of the current outline list at the specified level (𝚗 ≥ 1 and need not be
contiguous). Both methods can be intertwined, but please use the document
structure if you can.

1

Page labels

If the page numbers of your document are not a simple sequence starting with 1,
you can use \setpagelabels [pre {prefix}] style nr for communicating
this to the pdf viewer. This command affects the page labels from the next
page on: nr should be the numerical page number of that page. The prefix
is prepended to each number and the style must be one of decimal, roman,
Roman, alphabetic, Alphabetic or none. In the last case, only the prefix is
used.

PDF/A

You can declare pdf/a conformance with \pdfalevel xy, with version 𝚡 ∈
{𝟷, 𝟸, 𝟹} and conformance level 𝚢 ∈ {𝚊, 𝚋, 𝚞}. This will set the correct pdf version
and pdfaid metadata. If the conformance level is ‘a’, tagging will be enabled
(see the next chapter). Finally, a default RGB colour profile will be included. The
conformance level can be queried from the \pdfaconformancelevel register.

Note that merely declaring conformance will not make your document pdf/a
compliant, and that minim will not warn you if it is not. However, the fea-
tures described in this chapter and the next should be enough to make pdf/a
compliance possible.

Also note that there currently is no documented way of choosing a different
colour profile from the default (i.e. the default rgb profile provided by the
colorprofiles package). Should you need do that, you will have to do so manually,
after disabling the automatic inclusion by saying \expandafter\let \csname
minim:default:rgb:profile\endcsname = \relax.

Finally, note that pdf/a requires that spaces are represented by actual space
characters and that discretionary hyphens are marked as soft hyphens (U+00AD).
Since both features benefit accessibility and text extraction in general, they are
enabled by default. You can disable them by setting \writehyphensandspaces
to a nonpositive value.

PDF/UA

You can claim pdf/ua conformance with \pdfualevel 1. By itself, this will do
very little:

1. The pdfuaid:part metadata key will be set.
2. A conforming ViewerPreferences dictionary will be added to the docu-

ment catalog.
3. The /Suspects key of the MarkInfo dictionary will be set to false.
4. /Tab /S will be added to the page attributes.

Also making your document pdf/a-compliant, however, will relieve you of a few
additional worries:

5. Fonts will be included properly.
6. The (natural) language of every element will be known.
7. Headings will be strongly-structured.
8. Table headers will have their Scope set properly.
9. A document outline will be generated automatically.

2

This leaves the following for you to provide before your document can be
pdf/ua-compliant:

10. Figure and Formula structure elements must have alt texts.
11. Hyperlinks must have alternate descriptions.
12. Lists must have the ListNumbering attribute set.
13. Tables must have headers that are tagged as such.
14. Page headers and footers must be marked as header or footer artifacts.
15. Document section structure elements should have their title set.
16. All embedded files must have a description.

Embedded files
You can attach (associate) files with \embedfile <options>. The file will
be attached to the current structure element (see the next chapter) unless
the global option is given: then it will be added to the document catalog.
Arguments consisting of a single word can be given without braces and exactly
one of the options file or string must be present.
file {...} The file to embed.
string {...} The string to embed.
global Attach to the document catalog.
uncompressed Do not compress the file stream.
mimetype {...} The file’s mime type.
moddate {...}* The modification date (see * below).
desc {...} A description (the /Desc key).
relation {...} The /AFRelationship value as defined in pdf/a-3.
name {...} The file name (only required when writing a string).

* The modification date must be of the form yyyy[-m[m][-d[d]]]. A de-
fault moddate can be set with \setembeddedfilesmoddate {default}. The
default date will be expanded fully at the time of embedding. With the minim-
xmp package, a useful setting is \setembeddedfilesmoddate {\getmetadata
date}.

Lua module
The interface of the lua module (available via local M = require('minim-
pdf')) should be stable by now. Though it contains lua equivalents for most
tex commands described here, using them directly is not very ergonomical and
not recommended. Please consult the source if you do want to use them anyway.

3

Tagged PDF

This chapter is a continuation of the previous and describes the parts of minim-
pdf that concern the creation of tagged pdf. All features in this chapter must
be explicitly enabled by setting \writedocumentstructure to a positive value.
This will be done automatically if you declare pdf/a conformance (see above).

This part of the package is rather low-level and this chapter rather technical.
For a more general introduction to and discussion of tagged pdf, please read the
(excellent) manual of latex’s tagpdf package.

Quick-start guide
The minimal setup for producing tagged pdf from plain tex documents is
something like the following:

% first update all fonts to TrueType (ttf) or OpenType (otf)
\input luaotfload.sty
% ... font redefinitions omitted ...
\input minim-mp
\pdfalevel 2a % declare pdf/a conformance, enable tagging
\autotagplainoutput % update the output routine
% create section markers and counters
\sectionstructure { subsection, section, chapter }

You can then update your sectioning macros to look like this:

\def\section#1\par{%
 % space above
 \bigskip \goodbreak
 % structure and outline (this is the new part)
 \marksection \outline open {#1}
 % section header
 \noindent {\bf \the\chapternr.\the\sectionnr. #1}
 % space below
 \smallskip \noindent}

Other macros you might have for laying out structural elements, such as tables
or lists, should of course also be updated. The rest of this chapter describes the
tools you can use.

Please be advised that producing tagged pdf will likely forever remain a fragile
and error-prone process. You should always validate the resulting pdf. An easy-
to-use and free validator is veraPDF. For inspecting the document structure,
you can use the pdfinfo utility that comes with the Poppler pdf library.

Purpose, limitations and pitfalls
The main purpose of this package is semi-automatically marking up the (hier-
archical) structure of your document, thereby creating so-called tagged pdf. The
mechanism presented here is not quite as versatile as the pdf format allows. The
most important restriction is that all content of the document must be seen by
tex’s stomach in the logical order.

Furthermore, while the macros in this package are sophisticated enough that
tagging can be done without any manual intervantion, it is quite possible and
rather easy to generate the wrong document structure, or even cause syntax

4

https://verapdf.org/home
https://poppler.freedesktop.org/

errors in the resulting pdf code. You should always inspect and validate the
result.

This is the full list of limitations, pitfalls and shortcomings:

1. Document content must be seen by tex in its logical order (although you
can mark out-of-order content explicitly if you know what you are doing;
see below).

2. The contents of \localleftbox and \localrightbox must be marked
manually, probably as artifact.

3. There currently is no way of marking xforms or other pdf objects as content
items of themselves.

4. The content of xforms (i.e. pdf objects created by \useboxresource) should
not contain tagging commands.

5. Likewise, you should be careful with box reuse: it might work, but you
should check.

6. This package currently only supports pdf 1.7 tagging and is not yet ready
for use with pdf 2.0.

In order to help you debugging, some errors will refer you to the resulting pdf file.
If you get such errors, decompress the pdf and search for the string ‘Warning:’.
It will appear in the pdf stream at the exact spot the problem occurs.

General overview
When speaking about tagging, we have to do with two (or perhaps three)
separate and orthogonal tagging processes. The first is the creation of a hierarch-
ical document structure, made up of structure elements (SEs). The document
structure describes the logical structure of a document, made up of chapters,
paragraphs, references etc. The second tagging process is the tagging of marked
content items (MCIs): this is the partition of the actual page contents into
(disjoint) blocks that can be assigned to the proper structure element. Finally, as
a separate process, some parts of the page can be marked as artifacts, excluding
their content from both content and structure tagging.

When using this package, artifacts and structure elements (excluding paragraphs;
see below) must be marked explicitly, while marked content items will be created,
marked and assigned automatically. There is some (partial and optional) logic
for automatically arranging structure elements in their correct hierarchical
relation.

The mechanism through which this is achieved uses attributes and whatsits for
marking the contents and borders of SEs, MCIs and artifacts. At the end of the
output routine, just before the pdf page is assembled, this information will be
converted into markers inserted in the pdf stream.

Marked content items
Content items are automatically delineated at page, artifact and structure
element boundaries and terminated at paragraph or display skips. This should
relieve you from any manual intervention. However, if you run into problems,
the commands below might be helpful.

Use of ActualText, Alt or Lang attribute on MCIs, while allowed by the pdf
standard, is not supported by this package. You should set these on the structure
element instead.

5

The beginning and ending of a content item can be forced with \start-
contentitem and \stopcontentitem, while \ensurecontentitem will only
open a new content item if you are currently outside any. If you need some
part to be a single content item, you can use \startsinglecontentitem ...
\stopsinglecontentitem. This will disable all SE and MCI tagging inside.

Tagging (both of MCIs and SEs) can be disabled and re-enabled locally with
\stoptagging and \starttagging.

Artifacts

Artifacts can be marked in two ways: with \markartifact {type} {...} or
with \startartifact {type} ... \stopartifact. The type is written to
the pdf attribute dictionary directly, so that if you need a subtype, you can
write e.g. \startartifact {Pagination /Subtype/Header} etc.

Inside artifacts, other structure content markers will be ignored. Furthermore,
this package makes sure artifacts are never part of marked content items,
automatically closing and re-opening content items before and after the artifact.
While the pdf standard does not require the latter, not enforcing this seems to
confuse some pdf software.

Document structure

Like artifacts, structure elements can be given as \markelement {Tag} {...}
or \startelement {Tag} ... \stopelement {Tag}. Here, in many cases the
\stopelement is optional: whenever opening an element would cause a nesting
of incompatible Tags, the current element will be closed until such a nesting
is possible. Thus, opening a TR will close the previous TR, opening an H1 will
automatically close any open inline or block structure elements, opening a TOCI
will close all elements up until the current TOC etc. etc.

As a special case, the tags Document, Part, Art, Sect and Div (and their
aliases) will try and close all open structure elements up to and including the
last structure element with the same tag. (An alias will of course only match
the same alias.)

While the above can greatly reduce the effort of tagging, the logic is neither
perfect nor complete. You should always check the results in an external
application. Particular care should be taken when ‘skipping’ structure levels:
the sequence chapter – subsection – section will result in the section beneath
the subsection. If you are in doubt whether an element has been closed already,
you can use \ensurestopelement {Tag} instead of \stopelement to prevent
an error being raised.

All these helpful features can be disabled by setting \strictstructuretagging
to a positive value. Then, every structure element will have to be closed by an
explicit closing tag, as in xml. In this case, \stopelement and \ensurestopele-
ment will be equivalent.

You can query the place in the document structure of any point with \show-
documentstructure.

6

Structure element aliases
New structure element tags can be created with \addstructuretype [op-
tions] Existing Alias. This will create a new structure tag named Alias
with the same properties as Existing. The properties can be modified by
specifying options: these will set values of the corresponding entry in the
structure_types table (see the lua source file for this package). Any aliases
you declare will be written to the pdf’s RoleMap only if they have actually been
used.

Automatic tagging of paragraphs
By default, P structure elements are inserted automatically at the start of
every paragraph. The tag can be changed with \nextpartag {Tag}; leaving the
argument empty will prevent marking the next paragraph. Keep in mind that
the (internal) reassignment is local: if a paragraph marked with \nextpartag
starts inside a group, it will not reset. Hence, to avoid surprises, you should
have \nextpartag and the start of your paragraph at the same grouping level.

Useful structure elements for \nextpartag include H for headings and LI for
list items. Since minim-pdf produces strongly-structured documents, the tags
H1, H2, H3 etc. should not be used.

Please also note that if you add \hboxes directly to a vertical list (this includes
\line, \centerline and the like), the \everypar token list is not inserted
and no new paragraph structure element will be opened. The contents of the
\hbox will be added to the current structure element, and this may result in
an invalid structure hierarchy (and an error messsage reading ‘Structure type
mismatch’). You can make your intentions clear by inserting \startelement{P}
at the appropriate place (see above).

Auto-marking paragraphs can be (locally) disabled or enabled by saying \mark-
paragraphsfalse or \markparagraphstrue.

Manipulating the logical order
With the process outlined above, the logical order of structure elements has to
coincide with the order in which the SEs are ‘digested’ by tex. This, together
with the marked content items being assigned to structure elements in their
order of appearance, lies behind the restriction that logical and processing orders
should match.

With manual intervention, this restriction can be relaxed somewhat. Issuing
the pair \savecurrentelement ... \continueelement will append the MCIs
following \continueelement to the SE containing \savecurrentelement. Since
the assignments made here are global, this process cannot be nested; in more
complicated situations you should therefore use \savecurrentelementto\name
... \continueelementfrom\name which restores the current SE from a named
identifier \name.

Structure element options
The \startelement command allows a few options that are not mentioned
above: its full syntax is \startelement <options> {Tag}. The three most
useful options are alt for setting an alt-text (the /Alt entry in the structure
element dicionary), actual for a text replacement (/ActualText) and lang for
the language (/Lang; see the next section). The alternative and actual texts

7

can also be given after the fact with \setalttext {...} and \setactualtext
{...}; these apply to the current structure element.

Structure element attributes can be given with attr <owner> <key> <value>,
e.g. attr Layout Placement /Inline or added later with \tagattribute.
Note that for the owner and key the initial slash must be omitted; the value
on the other hand will be written to the pdf verbatim. Any number of attributes
can be added.

An identifier can be set with the id {...} option, or after the fact with
\settagid {...}. This identifier will be added to the IDTree and is entirely
optional; you will probably already know when you need it. The ref {...}
option lets a structure element refer to another (the /Ref option in the structure
element dictionary). Its argument should be the id of the other structure
element.

The title of the structure element (corresponding to the /T entry in the structure
element dictionary) can be set with the title {...} option. The pdf/ua
standard requires this key for all document sections.

Finally, structure element classes can be given with the class <classname>
keyword, which can be repeated. Classes can be defined with \newattribute-
class classname <attributes> where <attributes> can be any number of
attr statements as above.

Languages

If you do not specify a language code for a structure element, its language will
be determined automatically. In order for this to work, you must associate a
language code to every used language; you can do so with \setlanguagecode
name code, where name must be an identifier used with \uselanguage {name}
and code must be a two or three-letter language code, optionally followed by
a dialect specification, a country code, and/or some other tag. Note that the
language code is associated to a language name, not to the numerical value of
the \language parameter. This allows you to assign separate codes to dialects.

There is a small set of default language code associations, which can be found
in the file minim-languagecodes.lua. It covers most languages defined by
the hyph-utf8 package, as well as (due to their ubiquitous use) some ancient
languages.

An actual language change introduced by \uselanguage will not otherwise
be acted upon by this package. Therefore, you will probably want to add
\startelement{Span} after every in-line invocation of \uselanguage.

You can set the document language with \setdocumentlanguage language-
code. If unset, the language code associated with the first \uselanguage
statement will be used, or else und (undetermined). The only function of the
document language is that it is mentioned in the pdf catalog: it has no other
influence.

New languages can be declared with \newnamedlanguage {name} {lhm} {rhm}
and new dialects with \newnameddialect {language name} {dialect name}.
Dialects will use the same hyphenation patterns (and will indeed have the same
\language value) as their parent languages; newly declared languages will start
with no hyphenation patterns. Do note that you will probably also have to
specify language codes for new languages or dialects.

8

This package ensures the existence of the nohyph, nolang, uncoded and un-
determined dummy languages, all without hyphenation.

Mathematics
You can auto-tag equations as formulas by specifing \autotagformulas. After
this command, auto-tagging can be switched off and on with \stopformu-
latagging and \startformulatagging. Auto-tagging formulas is dangerous,
because sometimes equations are used for lay-out and should not be marked
as such. It is also somewhat fragile, as it requires equations to end with dollar
signs (and not with \Ustopmath or \Ustopdisplaymath).

The tex source of an equation can be associated with the Formula structure ele-
ment in various ways, which can be configured with \includeformulasources
{options}, where the options must be a comma-separated list of alttext,
actualtext or attachment. The alttext and actualtext option will set the
/Alt or /ActualText attributes to the unexpanded source code of the equation,
surrounded by the appropriate number of dollar signs. The attachment option
attaches the source of the formula as an embedded file with its /AFRelation
set to Source; this will only work if \pdfaconformancelevel equals three. The
name of this file can be changed by redefining \formulafilename inside the
equation. The default value is {actualtext,attachment}.

Note that the contents of the equation will be expanded fully (as in \xdef)
before their inclusion as the equation source. This may place restrictions on the
macros you want to use (those in minim-math should be safe). Any occurrence
of \alttext or \actualtext overrides the automatically-assigned value and
will be stripped from the equation source.

Tables
For marking up tables, a whole array of helper macros is available. First, \markt-
able should be given before the \halign. Then, in the template, the first cell
should start with \marktablerow \marktablecell and each subsequent cell
with \marktablecell. If your table starts with a header, insert \marktab-
leheader before it and \marktablebody after. Before a table footer, insert
\marktablefooter.

For greater convenience, insert just \automarktable before the \halign. Then
you can leave out all the above commands (unless you \omit a template of
course). This assumes the table has a single header row and more than one
column. If you use a table for typesetting a list, you can use \marktableaslist
instead, which marks the first column as list label and the second column as list
item. Of course, this only works with two-column tables.

Cells spanning multiple cells or rows can be marked with \markcolumnspan
{width} and \markrowspan {height}; these statements may not occur before
\marktablecell. Note that while \markcolumnspan properly increases the
(internal) column number, \markrowspan does nothing of the sort (and indeed,
no general logic can be given in the latter case). Always proceed with caution
when using cells spanning multiple rows, and inspect the resulting structure
carefully.

Marking up a table header (except if done through \automarktable) will not
connect normal table cells with their headers; you will have to connect these
manually by including \markcolumnhead or \markrowhead in the appropriate
header cells. This must be done after \markcolumnspan if the latter appplies.

9

If properly setup like this, other cells of the table (including header cells) will
be assigned to matching row or column headers automatically.

Other helper macros
For marking up an entry in a table of contents, you can use the macro \mark-
tocentry {dest} {lbl} {title} {filler} {pageno}, which should insert
all tags in the correct way. (The dest is a link destination and can be empty;
the lbl is a section number and can also be empty.)

For tagging (foot)notes, \marknoteref{*} and \marknotelbl{*}, when placed
around the footnote markers, will insert the proper Ref, Note and Lbl tags.

Helper macros for tagging sections can be setup quickly with \sectionstruc-
ture { <section list> }. The <section list> should be an increasing
comma-separated list of section types, e.g. {subsection, section, chapter}.
This will first reserve the \count registers \subsectionnr etc, then create
the structure aliases /Subsection etc. and finally define the helper macros
\marksubsection etc, which will do the following:

1. Call \ensurestopelement on all lower section types.
2. Set all lower section number counts to zero.
3. Increase the current section type number by one.
4. Call \startelement for the current section type.
5. Set the \nextpartag to H.

The proper place for these helper macros is just before the section heading;
inbetween those two may come an \outline statement (see the previous chapter).
You can set the title option to the internal \startelement statement with
an optional argument (e.g. \marksection [Section \the\sectionnr]).

Tagging the output routine
The command \autotagplainoutput will try and update plain tex’s output
routine to produce tagged page artifacts and footnotes. It redefines \makehead-
line, \makefootline, \footnoterule, \footnote and \vfootnote. Headline
and footline will not be marked as artifacts if their contents equal \hfil; the
footnote macros are edited to include the \marknoteref and \marknotelbl mac-
ros described above. Note that the \topinsert, \midinsert and \pageinsert
macros are left untouched; you will have to mark those explicitly.

You can make some changes to the affected macros before calling \autotag-
plainoutput, as it tries to be smart about it. Though the redefinitions involve
a full expansion, most conditionals and common typesetting instructions (\line,
\quad, \strut etc.) are safe-to-use and will not be expanded. If you include
custom macros of your own, however, it is wise to have those \protected.

Licence
This package may be distributed under the terms of the European Union Public
Licence (EUPL) version 1.2 or later. An english version of this licence has been
included as an attachment to this file; copies in other languages can be obtained
at

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

10

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

	Hyperlinks
	Bookmarks
	Page labels
	PDF/A
	PDF/UA
	Embedded files
	Lua module
	Tagged PDF
	Quick-start guide
	Purpose, limitations and pitfalls
	General overview
	Marked content items
	Artifacts
	Document structure
	Structure element aliases
	Automatic tagging of paragraphs
	Manipulating the logical order
	Structure element options
	Languages
	Mathematics
	Tables
	Other helper macros
	Tagging the output routine
	Licence

${\fam \ttfam \tentt n}≥1$

$\fam \ttfam \tentt x ∈ \{1,2,3\}$

$\fam \ttfam \tentt y ∈ \{a,b,u\}$

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

