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Abstract

This tutorial covers analysis of array comparative genomic hybridization (aCGH) data with Chip-
ster. It is divided into three sections. First one is about importing the data into Chipster, either
from local files or from the CanGEM database. The second section contains a basic aCGH analy-
sis workflow, which will also be made available directly from the Chipster user interface. The third
section covers additional topics that are not possible to include into a standard, readymade workflow.
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1 Importing, normalization and probe positions

1.1 Local files

The first step is to import the data into Chipster. Local files can be imported using the import tool as
described in this tutorial. For Agilent Feature Extraction files, choose ProbeName as the Identifier, and
depending on the dyes used, either gMedianSignal/gBGMedianSignal for Sample/Sample BG and rMedi-
anSignal/rBGMedianSignal for Control/Control BG, or vice versa. Depending on the settings of Feature
Extaction, your files might contain columns for mean signals instead of medians (e.g. gMeanSignal),
either in addition or instead of the median signals. They can also be used.

The next step is normalization, with e.g. the Normalization / Agilent 2-color tool. The default
parameter values are recommended.

For all aCGH data analysis, it is crucial to know what locations in the genome the array probes
hybridize to. These annotations can be downloaded using the aCGH / Fetch probe positions from
CanGEM tool. Mappings are available for different builds of the human genome, and the list of
available array platforms can be found here. In Chipster these annotations are saved to columns named
chromosome, start and end. For the rest of the tutorial, it is assumed that these columns are present in
your data.

1.2 CanGEM database

If the starting data is stored in the CanGEM database [1], the previous three steps can be combined by
using the aCGH / Import from CanGEM tool. Enter the accession number of the data in question,
and change the normalization parameters if needed (the default values are recommended) and the genome
build in case you do not want to use the latest one.

If your data is password-protected, there are two ways of accessing it. The first one is to enter your
username and password into the corresponding parameters, but this will result in them being saved
to any session and workflow files you create. A more secure approach is to log in on the CanGEM
web site, locate the session ID on the bottom right corner of the page (the ID looks something like
“ee8cbd9dcaa8284189f1582816531f46”), and copy&paste it into the session parameter in Chipster. This
way Chipster can still download your data files. But after you log out (or the session times out after 24
minutes), saved sessions or workflows cannot access your private data anymore.

(a) CanGEM database (b) Chipster: Import from CanGEM

Figure 1: Importing data from the CanGEM database using the aCGH / Import from CanGEM
tool. Note the accession number on the CanGEM web site, and enter it into Chipster.
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2 A basic aCGH data analysis workflow

This section assumes a starting point of a normalized dataset that contains information for probe positions
(columns chromosome, start and end). Similar quality control steps apply as with expression arrays, so
they are not covered in this tutorial.

2.1 Calling gains and losses

This first step in aCGH data analysis is usually to detect copy number aberrations, i.e. gains and losses.
Sometimes higher-level amplifications are also treated separately from gains. To do this in Chipster, use
the tool aCGH / Call copy number aberrations from aCGH data. The parameters let you specify
the number of chromosomes (usually 24 if you have sex-matched reference samples, 23 otherwise) and
the number of copy number states (either 3 for loss/normal/gain, or 4 to also include amplifications).

To obtain the discrete copy number levels, the data is first segmented [2], which refers to dividing
it into non-overlapping areas that are separated by breakpoints and most likely share a common copy
number. Calling [3] then assigns each segment a copy number call of a loss (represented with -1),
normal (0), gain (1), or, in case amplifications are separated from gains, an amplification (2). These
are sometimes referred to as “hard calls”. As they are determined using a probabilistic model, each call
also has an underlying probability, and these can be referred to as “soft calls”. For each probe on the
microarray, there are therefore three (or four) call probabilities that add up to 100%. If the probability
of (e.g. a loss) is over 50%, the probe is called as a loss (-1). Otherwise the call is normal (0).

The output from the tool is a huge table with large number of columns. Usually there is no need to
deal with these manually, but for information’s sake they are as follows: columns labeled chip.* contain
the original microarray log ratios, segmented.* contain segmented log ratios, flag.* contain copy number
calls, and probloss.*, probnorm.*, probgain.* and probamp.* contain the probabilities for the specific
calls. In addition, the frequencies of aberrations are shown in columns loss.freq, gain.freq, and if needed,
amp.freq. In addition to the table, a summary plot is also produced and can be seen in Figure 2(a).

After the calling step, individual samples can be plotted with the aCGH / Plot copy number
profiles from called aCGH data tool. Specify the number(s) of the sample(s), and chromosomes (0
means all chromosomes) to be plotted.

The implemented R packages for segmenting and calling are DNAcopy [2] and CGHcall [3], respec-
tively.

2.2 Identifying common regions

As aCGH data typically contains long stretches of DNA without breakpoints and a shared copy number,
its dimensionality can be greatly reduced after the calling. This makes the data more manageable and
also reduces the severity of multiple testing correction. In Chipster, this can be done with a tool called
aCGH / Identify common regions from called aCGH data. These regions are what should be
used for downstream analysis steps such as clustering and between-group comparisons.

The output is a condensed table containing the same columns as in the input file, and also an
additional one containing the number of probes within each region. At this stage, the number of rows is
usually also manageable, so that it is possible to order the table according to e.g. loss.freq or gain.freq
to see where the most frequent aberrations are. To also include information about karyotype bands,
run the tool aCGH / Add cytogenetic bands. In addition to the table, two plots are produced (see
Figure 3).

The corresponding R package is called CGHregions [4].

2.3 Clustering

Using methods developed for expression data to cluster aCGH samples does not yield to optimal results.
Therefore there is a separate tool for this purpose: aCGH / Cluster called aCGH data. It should
be run after identifying the common regions. Otherwise meaningless, long stretches of DNA without
breakpoints will have more weight on the clustering that small aberrations, as the long regions contain
more probes on the array. Identifying the common regions compresses these regions into individual data
points making the clustering more dependent on the actual differences between the samples.
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(a) summary (b) individual profile

Figure 2: Plots of DNA copy number. For both plots, chromosomes are along the x-axis and call
probabilities along the y-axis. The probabilities of losses are shown with red bars, and the
values can be read directly from the y-axis. Probabilities of gains are shown in green, and
the values can be red as ‘1 - the value on the y-axis’. Possible amplifications are shown with
a blue tick mark on the top. a) A summary plot of all samples is generated with aCGH
/ Call copy number aberrations from aCGH data and shows the mean probabilities
over all of the samples. b) A plot of on individual sample, produced with aCGH / Plot
copy number profiles from called aCGH data. Original log ratios are shown in black
and segmented log ratios in blue. This plot can also be drawn for a subset of chromosomes.

(a) regions (b) frequencies

Figure 3: Plots of common regions, produced with aCGH / Identify common regions from called
aCGH data. a) Each chromosome is shown with a horizontal bar, with bumps showing
breakpoint locations. Frequencies of losses are shown in red, and gains in green. b) This
plot is very similar to the summary plot in Figure 2(a), but contains aberration frequencies
instead of mean call probabilities. Losses are shown in gray (values on the y-axis), and gains
in black (values ‘1 - value on the y-axis’).
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Clustering can be performed both with hard or soft calls. Generally soft calls are recommended, as
they not only include the hard calls, but also additional information about the reliability of these calls.
The option to cluster using hard calls is provided only for situations when soft calls are not available. In
case you have analyzed your data with the aCGH / Call copy number aberrations from aCGH
data and aCGH / Identify common regions from called aCGH data tools, you will always have
the soft calls available. Figure 4 shows a clustering with both types of calls.

(a) soft calls (b) hard calls

Figure 4: Clustering of samples, produced with aCGH / Cluster called aCGH data. Clustering
using a) soft calls produces more reliable results and better shows the distances between
samples than b) hard calls.

The implemented R package is WECCA [5].

2.4 Known copy number variations

The tool aCGH / Count overlapping CNVs downloads a list of known copy number variations
(CNVs) from the Database of Genomic Variants [6] and appends two new columns to the data set:
cnv.count and cnv.per.Mb. The first one is a raw count of how many entries there are in the database
that overlap with the area of interest (can be probes, regions or genes). The latter one is calculated as
follows: For each area of interest, the number of bases pairs that are within a known CNV is calculated
and divided by the length of the area. Finally, the number is multiplied by 1,000,000 to yield the number
of CNV base pairs per megabase of sequence.

To evaluate the distribution of the values across the entire genome, run the tool Statistics / Cal-
culate descriptive statistics and specify “chips” for the parameter calculate.descriptives.for.

2.5 From probes to genes

In order to be able identify enriched Gene Ontology categories among gained/lost genes, we need to
know the copy number of each gene. For this, we can use the aCGH / Convert called aCGH data
from probes to genes tool, which works as follows. First, the list of human genes in downloaded from
the Ensembl database [7]. Then for each gene, it is checked whether there are probes on the array that
overlap with the position of the gene. If yes, these probe(s) are used to derive the copy number call
for this particular gene. If no, the last probe preceding and first one tailing the gene are used. Tool
parameters can be used to choose between two methods for deriving the copy number call: “majority”
means that in order to call the gene e.g. gained, more than 50% of the probes in question have to show
a gain. If “unambiguous” is chosen, the copy number of the gene is called as normal unless every one of
the probes gives the same aberrant call.
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2.6 Enriched Gene Ontology categories

After the aCGH data set has been converted from probe to gene-based, the tool aCGH / GO en-
richment for called aCGH genes can be used to detect Gene Ontology categories enriched among
frequently aberrated genes. The user can choose to pick only genes that are frequently lost, gained or
amplified, or combine all aberrations together (default). The minimum frequency of aberrations can
also be specified (default is 50%). Genes showing more frequent aberrations that the threshold are then
picked as the test list, and a hypergeometric test performed to see if certain Gene Ontology categories
are enriched. The entire gene list is used as the reference. It should therefore be an unfiltered list, i.e.
the direct output from aCGH / Convert called aCGH data from probes to genes.

The rest of the parameters are the same as for the corresponding expression tools.
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3 Additional analysis steps

3.1 Removing wavy artifacts

aCGH profiles typically contain a technical, wavy artifact [8]. When analyzing cancer samples, it is
possible to remove the effect of these waves by using clinical genetics samples as calibration data, as
they are not expected to contain large aberrations. Preferably the calibration data should be measured
with the same array platform as the data to be analyzed. Smoothing the waves generally leads to more
accurate calling and improved reliability. The effects can be seen in Figure 5.

(a) original profile plot (b) smoothed profile plot

(c) original summary plot (d) smoothed summary plot

Figure 5: The effect of dewaving with aCGH / Smooth waves from normalized aCGH data.
Profile plots of an individual sample are shown both for the a) original and b) smoothed
data. Dewaving generally results in more confident calling (more probabilities close to 0%
or 100%, instead of being around 50%). Summary plots are also shown for the c) original
and d) smoothed data sets. The effect of dewaving can be observed as more clearly defined
aberration boundaries.

One important note about using the tool is that while selecting the two normalized data sets, first
click on the cancer data, then on the calibration set. Otherwise Chipster will try to do it the wrong way.

The name of the implemented R package is NoWaves [9].
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3.2 Comparisons between groups

If your data set contains two or more groups, statistical testing for between-group differences can be
performed using the aCGH / Group tests for called aCGH data tool. It should normally be run
on regions (i.e. results from the aCGH / Identify common regions from called aCGH data
tool), but can also be run on probe or gene-based data as well, although running times are likely to
be prohibitively long. A test statistic (either Chi-square, Wilcoxon or Kruskal-Wallis) is calculated for
each region. As the distribution of the test statistic might be really skewed, significance is evaluated
with a permutation-based approach instead of simple multiple testing correction. The group labels for
individual arrays are randomly sampled, and the test statistics calculated for each repetition. Finally, a
false discovery rate (FDR) is calculated for each region based on how frequently test statistics as extreme
as the calculated one were observed during the permutations. The number of permutations to run can
be set in the tool parameters. The larger the number, the longer the execution takes. For final analysis,
at least 10,000 permutations are recommended.

The implemented R package is CGHtest, which is an updated version of CGHMultiArray [10].

3.3 Integration with expression

Integrating aCGH and expression data together is multi-step process involving four separate tools. The
relationships between these tools are outlined in Figure 4.3. The first step is to run aCGH / Match
copy number and expression probes, which takes two input files: the output of aCGH / Call copy
number aberrations from aCGH data and a normalized and filtered expression data set. To be able
to pair the samples of the two data sets, the accompanying phenodata tables must have columns that
contain common identifiers unambiguously identifying the pairs. When importing data from CanGEM,
this is usually a column called Sample. The output is a table of matched microarray probes, and a plot
showing heatmaps of both data sets (Figure 6(a)). This file can also be used to plot profiles of individual
samples with aCGH / Plot profiles of matched copy number and expression. Parameters allow
the user to specify sample(s) and choromosome(s) to be plotted. The produced image (see Figure 6(b))
contains an aCGH profile plot similar to Figure 2(b) and another plot showing expression levels.

(a) heatmaps (b) individual profile

Figure 6: a) Heatmaps of matched aCGH and expression data, generated with aCGH / Match copy
number and expression probes. The copy number data is on the left and samples are
shown in the same order as in the expression heatmap on the right. Chromosomes are shown
along the y-axis. b) aCGH and expression profiles of an individual sample, produced with
aCGH / Plot profiles of matched copy number and expression. aCGH data is shown
on the bottom (for interpretation see Figure 2(b)), and expression profile on top. Expression
levels of individual genes are shown with black dots, and blue lines show the mean expression
levels of genes within regions defined by the aCGH data.
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To test the statistical significance of copy number changes on expression levels, run the aCGH /
Test for copy-number-induced expression changes tool. It divides samples into two groups for
each expression probe based on the aberration profile for that particular probe. The comparison is either
between ‘loss vs. no-loss (normals, gains and amplifications)’ or between ‘no-gain (losses, normals) vs.
gain (gains and amplifications)’. Statistical testing is performed using a permutation test, and the tool
parameters let the user specify how many permutations to run. 10,000 are recommended for final analysis,
but take a long time. The resulting p-values can be found in the adj.p column of the resulting output
table. Also contained within this file is a column labeled as gene.id, which contains IDs that are needed
to plot visual representations of individual genes with the aCGH / Plot copy-number-induced gene
expression tool.

Figure 7: A plot with matched copy number and expression data. The title shows the names of the
aCGH (A 14 P137457) and expression probes (204411 at). Based on the observed aberration
frequencies, the test has been performed by comparing a “no-gain” group of samples (losses
and normals) vs. a “gain” group of samples (gains and amplifications), as shown by the
labels at the bottom. Expression levels of individual samples are shown with blue circles
and the scale is along the y-axis. The radius of the circle represents the probability of the
corresponding call. Each sample is therefore plotted on both columns, but using circles with
different radii. Red circles represent mean values. This particular case had an adjusted
p-value of 0.27.

The integration of copy number and expression data sets is implemented with the intCNGEan R
package [11].
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4 Workflow diagrams

4.1 Main aCGH tools

data import + normalization + aCGH / Fetch probe positions from CanGEM
or

aCGH / Import from CanGEM

aCGH / Smooth waves
(if calibration data available) calibration data (if available)

smoothed.tsv

aCGH / Call copy number 
aberrations from aCGH data

aberrations.tsv

aberrations.png

aCGH / Plot copy number 
profiles from called aCGH data cgh-profile.pngaCGH / Identify common 

regions from called aCGH data

regions.tsv regions.png regions-frequencies.png

aCGH / Cluster called aCGH 
data

wecca.png

aCGH / Group tests for called 
aCGH data

group-test.tsv

aCGH / Covert called aCGH 
data from probes to genes gene-aberrations.tsv

aCGH / GO enrichment for 
called aCGH genes hypergeo-go.tsv

hypergeo-go.html

Figure 8: A diagram showing the order in which the aCGH tools should be executed.
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4.2 aCGH annotation tools

regions.tsv
or aberrations.tsv

or gene-aberrations.tsv

aCGH / Add cytogenetic bands

cytobands.tsv

aCGH / Count overlapping 
CNVs

cnvs.tsv

Statistics / Calculate descriptive 
statistics

descr-stats.tsv descriptives.tsv

Figure 9: A diagram showing a typical use case of aCGH annotation tools.

11



4.3 Tools for integrating aCGH and expression data

aberrations.tsv normalized and filtered 
expression data

aCGH / Match copy number 
and expression probes

matched-cn-and-expression.tsv matched-cn-and-expression-
heatmap.png

aCGH / Plot profiles of matched 
copy number and expression

matched-cn-and-expression-profile.png

aCGH / Test for copy-number-
induced expression changes

cn-induced-expression.tsv

aCGH / Plot copy-number-
induced gene expression

cn-induced-expression-plot.png

Figure 10: A diagram showing how the different tools involved in integrating aCGH and expression
data are related to each other.
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